Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1145))

Abstract

The dry antibiotic development pipeline coupled with the emergence of multi-drug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Understanding the mode of action of antibiotics is an important precursor for optimizing their use and development. This chapter provides a concise treatise of the current knowledge-based on the primary mode of action of polymyxins as well as recent developments in understanding of bacterial cell responses and secondary modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rietschel ET, Brade H (1987) Lipopolysaccharides, endotoxins and O-antigens of gram-negative bacteria: chemical structure, biologic effect and serologic properties. Infection 15(2):133–141

    Article  CAS  PubMed  Google Scholar 

  3. Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338(23):2431–2447

    Article  CAS  PubMed  Google Scholar 

  4. Rietschel ET, Brade H, Brade L, Brandenburg K, Schade U, Seydel U et al (1987) Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res 231:25–53

    CAS  PubMed  Google Scholar 

  5. Hancock RE (1997) The bacterial outer membrane as a drug barrier. Trends Microbiol 5(1):37–42

    Article  CAS  PubMed  Google Scholar 

  6. Hancock RE (1997) Antibacterial peptides and the outer membranes of gram-negative bacilli. J Med Microbiol 46(1):1–3

    Article  CAS  PubMed  Google Scholar 

  7. Pristovsek P, Kidric J (2004) The search for molecular determinants of LPS inhibition by proteins and peptides. Curr Top Med Chem 4(11):1185–1201

    Article  CAS  PubMed  Google Scholar 

  8. Pristovsek P, Kidric J (1999) Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem 42(22):4604–4613

    Article  CAS  PubMed  Google Scholar 

  9. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  CAS  PubMed  Google Scholar 

  10. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  PubMed  Google Scholar 

  11. Velkov T, Thompson PE, Nation RL, Li J Structure--activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ofek I, Cohen S, Rahmani R, Kabha K, Tamarkin D, Herzig Y et al (1994) Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother 38(2):374–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 111(3):551–563

    Article  CAS  PubMed  Google Scholar 

  14. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691

    Article  CAS  PubMed  Google Scholar 

  15. Cajal Y, Ghanta J, Easwaran K, Surolia A, Jain MK (1996) Specificity for the exchange of phospholipids through polymyxin B mediated intermembrane molecular contacts. Biochemistry 35(18):5684–5695

    Article  CAS  PubMed  Google Scholar 

  16. Cajal Y, Rogers J, Berg OG, Jain MK (1996) Intermembrane molecular contacts by polymyxin B mediate exchange of phospholipids. Biochemistry 35(1):299–308

    Article  CAS  PubMed  Google Scholar 

  17. Cajal Y, Berg OG, Jain MK (1995) Direct vesicle-vesicle exchange of phospholipids mediated by polymyxin B. Biochem Biophys Res Commun 210(3):746–752

    Article  CAS  PubMed  Google Scholar 

  18. Mogi T, Murase Y, Mori M, Shiomi K, Omura S, Paranagama MP et al (2009) Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the gram-positive bacterium Mycobacterium smegmatis. J Biochem 146(4):491–499

    Article  CAS  PubMed  Google Scholar 

  19. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL et al (2013) A secondary mode of action of polymyxins against gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot. 67(2):147–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hancock REW (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  CAS  PubMed  Google Scholar 

  21. Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97(16):8856–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho J, Kim S (2010) Non-membrane targets of antimicrobial peptides: novel therapeutic opportunities? Advances in Molecular and Cellular Microbiology No 18. CABI, Wallingford, pp 128–140

    Google Scholar 

  23. Otvos L (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11(11):697–706

    Article  CAS  PubMed  Google Scholar 

  24. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46(1):723–763

    Article  CAS  PubMed  Google Scholar 

  25. Teuber M (1974) Action of polymyxin B on bacterial membranes. Arch Microbiol 100(1):131–144

    Article  CAS  Google Scholar 

  26. Boshoff HI, Barry CE 3rd (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80

    Article  CAS  PubMed  Google Scholar 

  27. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184

    Article  CAS  PubMed  Google Scholar 

  28. Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D et al (2005) Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci U S A 102(12):4548–4553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fisher N, Warman AJ, Ward SA, Biagini GA (2009) Chapter 17 Type II NADH: quinone oxidoreductases of Plasmodium falciparum and Mycobacterium tuberculosis kinetic and high-throughput assays. Methods Enzymol 456:303–320

    Article  CAS  PubMed  Google Scholar 

  30. Biagini GA, Viriyavejakul P, O’Neill PM, Bray PG, Ward SA (2006) Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother 50(5):1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fisher N, Bray PG, Ward SA, Biagini GA (2007) The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 23(7):305–310

    Article  CAS  PubMed  Google Scholar 

  32. Kim MS, Kim YJ (2004) Enzymatic properties of the membrane bound NADH oxidase system in the aerobic respiratory chain of Bacillus cereus. J Biochem Mol Biol 37(6):753–756

    CAS  PubMed  Google Scholar 

  33. Kerscher S, Dröse S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. In: Schäfer G, Penefsky H (eds) Bioenergetics. Results and problems in cell differentiation, vol 45. Springer, Berlin/Heidelberg, pp 185–222

    Google Scholar 

  34. Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A (1998) Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364(2):125–133

    Article  CAS  PubMed  Google Scholar 

  35. Yagi T (1991) Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr 23(2):211–225

    Article  CAS  PubMed  Google Scholar 

  36. Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42(8):2266–2274

    Article  CAS  PubMed  Google Scholar 

  37. Mogi T, Murase Y, Mori M, Shiomi K, Ōmura S, Paranagama MP et al (2009) Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the gram-positive bacterium Mycobacterium smegmatis. J Biochem 146(4):491–499

    Article  CAS  PubMed  Google Scholar 

  38. Deris ZZ, Swarbrick JD, Roberts KD, Azad MA, Akter J, Horne AS et al (2014) Probing the penetration of antimicrobial polymyxin lipopeptides into gram-negative bacteria. Bioconjug Chem 25(4):750–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Velkov T, Deris ZZ, Huang JX, Azad MA, Butler M, Sivanesan S et al (2013) Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae. Innate Immun. 20(4):350–363. https://doi.org/10.1177/1753425913493337

    Article  PubMed  CAS  Google Scholar 

  40. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure−activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68(4):603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong CK, Patel V, Yang JC, Dvorin JD, Duraisingh MT, Clardy J et al (2009) Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors. Bioorg Med Chem Lett 19(3):972–975

    Article  CAS  PubMed  Google Scholar 

  43. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469(7331):483–490

    Article  CAS  PubMed  Google Scholar 

  44. Fisher N, Bray PG, Ward SA, Biagini GA (2008) Malaria-parasite mitochondrial dehydrogenases as drug targets: too early to write the obituary. Trends Parasitol 24(1):9–10

    Article  CAS  PubMed  Google Scholar 

  45. Biagini GA, Fisher N, Shone AE, Mubaraki MA, Srivastava A, Hill A et al (2012) Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Natl Acad Sci 109:8298–8303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS (2012) Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56(11):5642–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  48. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N et al (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A 111(20):E2100–E2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37(3):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wright GD, Hung DT, Helmann JD (2013) How antibiotics kill bacteria: new models needed? Nat Med 19(5):544–545

    Article  PubMed  CAS  Google Scholar 

  52. Skiada A, Markogiannakis A, Plachouras D, Daikos GL (2011) Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents 37(3):187–193

    Article  CAS  PubMed  Google Scholar 

  53. Poole K (2012) Stress responses as determinants of antimicrobial resistance in gram-negative bacteria. Trends Microbiol 20(5):227–234

    Article  CAS  PubMed  Google Scholar 

  54. Dalebroux ZD, Miller SI (2014) Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 17:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci U S A 111(5):1963–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Needham BD, Trent MS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11(7):467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67(9):2069–2089

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54(8):3372–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W et al (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122(3):461–472

    Article  CAS  PubMed  Google Scholar 

  60. Gunn JS, Miller SI (1996) PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178(23):6857–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C (2013) Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem 288(35):25551–25561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kato A, Groisman EA (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 18(18):2302–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kato A, Chen HD, Latifi T, Groisman EA (2012) Reciprocal control between a bacterium’s regulatory system and the modification status of its lipopolysaccharide. Mol Cell 47(6):897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okuda S, Freinkman E, Kahne D (2012) Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338(6111):1214–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tamayo R, Choudhury B, Septer A, Merighi M, Carlson R, Gunn JS (2005) Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 187(10):3391–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M et al (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55(7):3370–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8(6):711–724

    Article  CAS  PubMed  Google Scholar 

  69. Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M et al (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276(5310):250–253

    Article  CAS  PubMed  Google Scholar 

  70. Gibbons HS, Reynolds CM, Guan Z, Raetz CR (2008) An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47(9):2814–2825

    Article  CAS  PubMed  Google Scholar 

  71. Delgado MA, Mouslim C, Groisman EA (2006) The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60(1):39–50

    Article  CAS  PubMed  Google Scholar 

  72. Larue K, Kimber MS, Ford R, Whitfield C (2009) Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 284(11):7395–7403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pescaretti Mde L, Lopez FE, Morero RD, Delgado MA (2011) The PmrA/PmrB regulatory system controls the expression of the wzzfepE gene involved in the O-antigen synthesis of Salmonella enterica serovar Typhimurium. Microbiology 157(Pt 9):2515–2521

    Article  CAS  Google Scholar 

  74. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR (2000) Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J 19(19):5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malinverni JC, Silhavy TJ (2009) An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc Natl Acad Sci U S A 106(19):8009–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE (2004) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279(43):44966–44975

    Article  CAS  PubMed  Google Scholar 

  77. Dekker N (2000) Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol 35(4):711–717

    Article  CAS  PubMed  Google Scholar 

  78. Muller C, Plesiat P, Jeannot K (2011) A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(3):1211–1221

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock RE (2012) The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother 56(12):6212–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li XZ, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64(2):159–204

    Article  CAS  PubMed  Google Scholar 

  81. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12):3322–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223–240

    Article  CAS  PubMed  Google Scholar 

  83. Cummins J, Reen FJ, Baysse C, Mooij MJ, O’Gara F (2009) Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 155.(Pt 9:2826–2837

    Article  CAS  PubMed  Google Scholar 

  84. Yang B, Larson TJ (1996) Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 178(24):7090–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou D, Han Y, Qiu J, Qin L, Guo Z, Wang X et al (2006) Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes Infect/Inst Pasteur 8(12–13):2669–2678

    Article  CAS  Google Scholar 

  86. Yeom J, Imlay JA, Park W (2010) Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285(29):22689–22695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240(4852):640–642

    Article  CAS  PubMed  Google Scholar 

  88. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309

    Article  CAS  PubMed  Google Scholar 

  89. Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KR et al (2013) Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 57(10):4831–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL et al (2014) A secondary mode of action of polymyxins against gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot 67(2):147–151

    Article  CAS  Google Scholar 

  91. Li J, Rayner CR, Nation RL, Owen RJ, Tan KE, Spelman D (2006) Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50(9):2946–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hawley JS, Murray CK, Jorgensen JH (2008) Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother 52(1):351–352

    Article  CAS  PubMed  Google Scholar 

  93. Choi MJ, Ko KS (2014) Mutant prevention concentrations of colistin for Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae clinical isolates. J Antimicrob Chemother 69(1):275–277

    Article  CAS  PubMed  Google Scholar 

  94. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moore RA, Bates NC, Hancock RE (1986) Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother 29(3):496–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsubery H, Ofek I, Cohen S, Eisenstein M, Fridkin M (2002) Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62(5):1036–1042

    Article  CAS  PubMed  Google Scholar 

  97. Tsubery H, Ofek I, Cohen S, Fridkin M (2000) Structure-function studies of polymyxin B nonapeptide: implications to sensitization of gram-negative bacteria. J Med Chem 43(16):3085–3092

    Article  CAS  PubMed  Google Scholar 

  98. Tsubery H, Ofek I, Cohen S, Fridkin M (2001) N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity. Peptides 22(10):1675–1681

    Article  CAS  PubMed  Google Scholar 

  99. Soon RL, Velkov T, Chiu F, Thompson PE, Kancharla R, Roberts K et al (2011) Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions. Anal Biochem 409(2):273–283

    Article  CAS  PubMed  Google Scholar 

  100. Benincasa M, Pacor S, Gennaro R, Scocchi M (2009) Rapid and reliable detection of antimicrobial peptide penetration into gram-negative bacteria based on fluorescence quenching. Antimicrob Agents Chemother 53(8):3501–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16(6):284–290

    Article  CAS  PubMed  Google Scholar 

  102. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M et al (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27(6):1171–1182

    Article  CAS  PubMed  Google Scholar 

  103. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68(11):6139–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schurek KN, Sampaio JL, Kiffer CR, Sinto S, Mendes CM, Hancock RE (2009) Involvement of pmrAB and phoPQ in polymyxin B adaptation and inducible resistance in non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 53(10):4345–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shi Y, Cromie MJ, Hsu FF, Turk J, Groisman EA (2004) PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol 53(1):229–241

    Article  CAS  PubMed  Google Scholar 

  106. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR (2001) An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276(46):43122–43131

    Article  CAS  PubMed  Google Scholar 

  107. Soon RL, Nation RL, Cockram S, Moffatt JH, Harper M, Adler B et al (2011) Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment. J Antimicrob Chemother 66(1):126–133

    Article  CAS  PubMed  Google Scholar 

  108. Koike M, Iida K, Matsuo T (1969) Electron microscopic studies on mode of action of polymyxin. J Bacteriol 97(1):448–452

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Velkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Velkov, T. (2019). Polymyxins: Mode of Action. In: Li, J., Nation, R., Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside. Advances in Experimental Medicine and Biology, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-16373-0_4

Download citation

Publish with us

Policies and ethics