Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 591))

Abstract

Turbulence is a multi-scale phenomenon that is ubiquitous in our universe. Strong nonlinearity in a system enhances coupling among modes, leading to a very broad spectrum in the spatial domain which contains an energy cascade and dissipation. We have to deal with all the scales of motions from the largest energy-containing scale to the smallest dissipation scales simultaneously. One of the subjects of this chapter is to show how to treat nonlinearity beyond the quasi-linear approximation. Turbulence of practical interest is almost always inhomogeneous and accompanied by non-uniform global structures, such as density stratification, velocity shear, rotation and magnetic field. Therefore, another subject of this chapter is to present how to tackle strongly nonlinear and inhomogeneous magnetohydrodynamic turbulence. Turbulence modelling provides a strong tool for studying realistic turbulent flow. A way to construct a turbulence model on the basis of the fundamental equations, beyond the heuristic ad hoc modelling, is shown. With these preparations, the magnetic reconnection problem is addressed from the viewpoint of turbulent transport.

The author would like to cordially dedicate this chapter to the memory of his mentor and great friend, Akira Yoshizawa (25 August 1942–3 June 2018), who kept inspiring him through heartfelt and thoughtful encouragement from the beginning of his research career. Part of this work was conducted under the support of the JSPS Grants-in-Aid Scientific Research 18H01212.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As a parody of a poem by Jonathan Swift, Richardson wrote: “We realize thus that: big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity – in the molecular sense” (Richardson 1922).

  2. 2.

    Arnold Sommerfeld proposed this name (Rott 1990).

  3. 3.

    Due to the frequent appearance of dyadic products, u ⊗u will appear as uu.

  4. 4.

    Hereafter, the internal energy is denoted as q not e, sincee is used for the electric field in MHD.

References

  • O.G. Bakunin, Turbulence and Diffusion: Scaling Versus Equations (Springer, Berlin, 2008)

    MATH  Google Scholar 

  • G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  • A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Fast reconnection in high Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009)

    Article  Google Scholar 

  • P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  • J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech. 41, 453–480 (1970)

    Article  Google Scholar 

  • G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astron. J. 743, 51 (2011)

    Article  Google Scholar 

  • U. Frisch, Turbulence, the Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • H.P. Furth, J. Killeen, M. Rosenbluth, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963)

    Article  Google Scholar 

  • M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astron. J. 438, 763–775 (1995)

    Article  Google Scholar 

  • Z.B. Guo, P.H. Diamond, X.G. Wang, Magnetic reconnection, helicity dynamics, and hyper-diffusion. Astron. J. 757, 173-1–15 (2012)

    Article  Google Scholar 

  • F. Hamba, H. Sato, Turbulent transport coefficients and residual energy in mean-field dynamo theory. Phys. Plasmas 15, 022302-1–12 (2008)

    Article  Google Scholar 

  • K. Higashimori, N. Yokoi, M. Hoshino, Explosive turbulent magnetic reconnection. Phys. Rev. Lett. 110, 255001-1–5 (2013)

    Google Scholar 

  • J.O. Hinze, Turbulence, 2nd edn. (McGraw-Hill Book, New York City, 1975)

    Google Scholar 

  • Y.-M. Huang, L. Comisso, A. Bhattacharjee, Plasmoid instability in evolving current sheets and onset of fast reconnection. Astron. J. 849, 75 (2017)

    Article  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    MathSciNet  Google Scholar 

  • A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  Google Scholar 

  • G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 19, 297–314 (2012)

    Article  Google Scholar 

  • R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543 (1959)

    Article  MathSciNet  Google Scholar 

  • R.H. Kraichnan, Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575–598 (1965)

    Article  MathSciNet  Google Scholar 

  • R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  Google Scholar 

  • R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. (Springer, Berlin, 1991)

    Book  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn., Chap. 2 (Butterworth-Heinemann, Oxford, 1987), p. 44

    Google Scholar 

  • B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic, New York, 1972)

    MATH  Google Scholar 

  • B.E. Launder, G. Reece, W. Rodi, Progress of the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)

    Article  Google Scholar 

  • M. Lesieur, Turbulence in Fluids, 4th edn. (Springer, Berlin, 2008)

    Book  Google Scholar 

  • D.C. Leslie, Developments in the Theory of Turbulence (Clarendon Press, Oxford, 1973)

    MATH  Google Scholar 

  • N.F Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007)

    Article  Google Scholar 

  • N.F Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, L146–L150 (2009)

    Article  Google Scholar 

  • W.H. Matthaeus, S.L. Lamkin, Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Plasmas 28, 303–307 (1985)

    Google Scholar 

  • W.D. McComb, The Physics of Fluid Turbulence (Clarendon Press, Oxford, 1990)

    MATH  Google Scholar 

  • W.D. McComb, Renormalization Methods: A Guide for Beginners (Clarendon Press, Oxford, 2004)

    MATH  Google Scholar 

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (The MIT Press, Cambridge, 1975)

    Google Scholar 

  • N. Narukage, K. Shibata, Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122–1134 (2006)

    Article  Google Scholar 

  • H. Oertel, Prandtl’s Essentials of Fluid Mechanics, Chap. 7 (Springer, Berlin, 2004), p. 326

    Book  Google Scholar 

  • S.A. Orszag, Analytical theories of turbulence. J. Fluid Mech. 41, 363–386 (1970)

    Article  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Fluid Mech. 62, 509–520 (1957)

    Google Scholar 

  • E.R. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  • O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)

    Article  Google Scholar 

  • L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922), p. 66

    MATH  Google Scholar 

  • L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A 110, 709–737 (1929)

    Article  Google Scholar 

  • N. Rott, Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 22, 1–11 (1990)

    Article  MathSciNet  Google Scholar 

  • P. Sagaut, C. Cambon, Homogeneous Turbulence Dynamics, Chap. 2 (Cambridge University Press, Cambridge, 2008), p. 10

    Book  Google Scholar 

  • H. Schlichting, Boundary-Layer Theory, Chap. 19 (McGraw-Hill Book, New York City, 1979), p. 579

    Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001)

    Article  Google Scholar 

  • T. Shibayama, K. Kusano, T. Miyoshi, T. Nakabou, G. Vekstein, Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks. Phys. Plasmas 22, 100706 (2015)

    Article  Google Scholar 

  • J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in IAU Symposium No. 6 Electromagnetic Phenomena in Cosmical Physics (1958), pp. 123–134

    Google Scholar 

  • H. Tennekes, J.L. Lumley, A First Course in Turbulence (The MIT Press, Cambridge, 1972)

    MATH  Google Scholar 

  • F. Widmer, J. Büchner, N. Yokoi, Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics. Phys. Plasmas 23, 042311 (2016)

    Article  Google Scholar 

  • F. Widmer, J. Büchner, N. Yokoi, Characterizing plasmoid reconnection by turbulence dynamics. Phys. Plasmas 23, 092304 (2016)

    Article  Google Scholar 

  • F. Widmer, J. Büchner, N. Yokoi, Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale. Phys. Plasmas (submitted, 2019)

    Google Scholar 

  • H.W. Wyld Jr., Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, Modeling of the turbulent magnetohydrodynamic residual-energy equation using a statistical theory. Phys. Plasmas 13, 062306 (2006)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, Modeling the turbulent cross-helicity evolution: production, dissipation, and transport rates. J. Turbul. 12, N27-1–33 (2011)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, Cross helicity and related dynamo. Geophys. Astrophys. Fluid Dyn. 107, 114–184 (2013)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, Electromotive force in strongly compressible magnetohydrodynamic turbulence. J Plasma Phys. 84, 735840501 (2018)

    Article  Google Scholar 

  • N. Yokoi, Mass and internal-energy transports in strongly compressible magnetohydrodynamic turbulence. J. Plasma Phys. 84, 775840603 (2018)

    Article  Google Scholar 

  • N. Yokoi, A. Brandenburg, Large-scale flow generation by inhomogeneous helicity. Phys. Rev. E 93, 033125 (2016)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, F. Hamba, An application of the turbulent magnetohydrodynamic residual-energy equation model to the solar wind. Phys. Plasmas 14, 112904 (2007)

    Article  Google Scholar 

  • N. Yokoi, M. Hoshino, Flow-turbulence interaction in magnetic reconnection. Phys. Plasmas 18, 111208 (2011)

    Article  Google Scholar 

  • N. Yokoi, A. Yoshizawa, Statistical analysis of the effects of helicity in inhomogeneous turbulence. Phys. Fluids A 5, 464–477 (1993)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, A. Yoshizawa, Subgrid-scale model with structural effects incorporated through the helicity. Prog. Turbul. VII Springer Proc. Phys. 196, 115–121 (2017)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, R. Rubinstein, A. Yoshizawa, F. Hamba, A turbulence model for magnetohydrodynamic plasmas. J. Turbul. 9, N37-1–25 (2008)

    Article  MathSciNet  Google Scholar 

  • N. Yokoi, K. Higashimori, M. Hoshino, Transport enhancement and suppression in turbulent magnetic reconnection: a self-consistent turbulence model. Phys. Plasmas 20, 122310-1–17 (2013)

    Article  Google Scholar 

  • A. Yoshizawa, Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27, 1377–1387 (1984)

    Article  Google Scholar 

  • A. Yoshizawa, Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990)

    Article  Google Scholar 

  • A. Yoshizawa, Turbulent magnetohydrodynamic dynamo: modeling of the turbulent residual-helicity equation. J. Phys. Soc. Jpn. 65, 124–132 (1996)

    Article  Google Scholar 

  • A. Yoshizawa, Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modelling and Statistical Theory (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobumitsu Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokoi, N. (2020). Turbulence, Transport and Reconnection. In: MacTaggart, D., Hillier, A. (eds) Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. CISM International Centre for Mechanical Sciences, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-16343-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16343-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16342-6

  • Online ISBN: 978-3-030-16343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics