Skip to main content

Aquatic Insect Sensilla: Morphology and Function

  • Chapter
  • First Online:

Abstract

Insect extraordinary evolutionary success is due to different reasons among which their ability to receive and respond to a great variety of sensory cues thanks to their developed sense organs encompassing a high number of diversified sensilla, mainly located on their antennae. The successful invasion of lotic and lentic freshwaters by terrestrial insect required physiological constraints also regarding sensory systems. This chapter reviews the present knowledge about antennal sensory equipment in adult and aquatic stages of Ephemeroptera, Odonata, Plecoptera and Trichoptera. These insect orders have aquatic larval stages well adapted to this environment, while they move to the terrestrial habitat as adults. To be able to receive sensory cues in two very different biotopes during the young and the adult stage is a fundamental prerequisite for these insects. The data reported are mainly based on morphological investigations under scanning and transmission electron microscope (SEM, TEM), and behavioural and electrophysiological investigations (the latter available only for Odonata and Plecoptera). The chapter considers separately the main sensory capacities located on the antennae in the above-reported aquatic insect orders, in particular mechanoreception, chemoreception, thermo-hygroreception and their modifications from the aquatic to the adult stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akent’eva NA (2012) Multimodal sensory organs in larvae of some insect species. Zool Zh 91:38–48

    Google Scholar 

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295

    Article  Google Scholar 

  • Altner H, Sass H, Altner I (1977) Relationship between structure and function of antenna chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res 176:389–405

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Landeira-Dabarca A, Peckarsky B (2014) Origin and specificity of predatory fish cues detected by Baetis larvae (Ephemeroptera; Insecta). Anim Behav 96:141–149

    Article  Google Scholar 

  • Ansteeg O, Dettner K (1991) Chemistry and possible biological significance of secretions from a gland discharging at the 5th abdominal sternite of adult caddisflies (Trichoptera). Entomol Gen 15:303–312

    Article  Google Scholar 

  • Bergmann J, Löfstedt C, Ivanov VD et al (2001) Identification and assignment of the absolute configuration of biologically active methyl-branched ketones from limnephilid caddisflies. Eur J Org Chem 2001:3175–3179

    Article  Google Scholar 

  • Bernáth B, Szedenics G, Wildermuth H et al (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47:1707–1719

    Article  Google Scholar 

  • Brönmark C, Hansson L-A (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:103–109

    Article  Google Scholar 

  • Caillère L (1964) Contribution au comportement de capture des larves d’Agrion splendens Harris 1782 (Odonates, Zygopteres): role des antennes dans le declenchement du reflexe de capture. 89° Congr Nat Soc Sav Lyon 435–442

    Google Scholar 

  • Caillère L (1965) Description du reflexe de capture chez la larve d’Agrion splendens Harris 1782 (Insectes, Odonates, Zygopteres). Bull Mens Soc Linn Lyon 34:424–434

    Article  Google Scholar 

  • Caillère L (1968) Role des organes des sens dans le comportement de capture chez la larve d’Agrion splendens Harris 1782 (Insectes, Odonates, Zygopteres). Bull Mens Soc Linn Lyon 37:25–34

    Article  Google Scholar 

  • Chivers DP, Wisenden BD, Smith RJF (1996) Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim Behav 52:315–320

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies behaviour and ecology of Odonata. Harley Books, Colchester

    Google Scholar 

  • Crespo JG (2011) A review of chemosensation and related behavior in aquatic insects. J Insect Sci 11:1–39

    Article  Google Scholar 

  • Crumrine PW (2006) Age specific behavioral responses of odonate larvae to chemical and visual cues from predators. J Fresh Ecol 21:9–16

    Article  Google Scholar 

  • Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a serotonin immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 498:727–746

    Article  CAS  PubMed  Google Scholar 

  • Davis EE, Sokolove PG (1975) Temperature responses of antennal receptors of the mosquito Aedes aegypti. J Comp Physiol 96:223–236

    Article  Google Scholar 

  • Derby CD, Kozma MT, Senatore A et al (2016) Molecular mechanisms of reception and perireception in crustacean chemoreception: a comparative review. Chem Sens 41:381–398

    Article  CAS  Google Scholar 

  • Devarakonda R, Barth FG, Humphrey JAC (1996) Dynamics of arthropod filiform hairs. IV. Hair motion in air and water. Philos Trans R Soc Lond Ser B Biol Sci 351:933–946

    Article  Google Scholar 

  • Dijkstra KD, Monaghan MT, Pauls SU (2014) Freshwater biodiversity and aquatic insect diversification. Annu Rev Entomol 59:143–163

    Article  CAS  PubMed  Google Scholar 

  • Duffield RM (1981) 2-Nonanol in the exocrine secretion of the Nearctic caddisfly, Rhyacophila fuscula (Walker) (Rhyacophilidae: Trichoptera). Proc Entomol Soc Wash 83:60–63

    Google Scholar 

  • Duffield RM, Blum MS, Wallace JB et al (1977) Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis (Trichoptera: Limnephilidae). J Chem Ecol 3:649–656

    Article  CAS  Google Scholar 

  • Ehnbom K (1948) Studies on the central and sympathetic nervous system and some sense organs in the head of neuroptid insects. Opuscula Entomol Suppl 8:1–80

    Google Scholar 

  • Enjin A (2017) Humidity sensing in insects-from ecology to natural processing. Curr Opin Insect Sci 24:1–6

    Article  PubMed  Google Scholar 

  • Enjin A, Zaharieva EE, Frank DD et al (2016) Humidity sensing in Drosophila. Curr Biol 26:1352–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris SM (2005) Development organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect. Evol Dev 7:150–159

    Article  PubMed  Google Scholar 

  • Faucheux MJ (2007) Multiporous and aporous sensilla on the larval antennae of the relict dragonfly Epiophlebia superstes (Selys, 1889) (Odonata: Anisozygoptera: Epiophlebiidae). Bull Inst R Sci Nat Belg Entomol 77:121–128

    Google Scholar 

  • Faucheux MJ, Meurgey F (2007) Sensilles chètiformes et filiformes sur les antennes larvaires d’Uropelata chiltoni Tillyard, 1930 (Odonata, Anisoptera, Petaluridae). Martinia 23:127–132

    Google Scholar 

  • Faucheux MJ, Meurgey F (2009) Les sensilles antennaires d’une larve fouisseuse, Ophiogomphus cecilia (Geoffroy in Fourcroy, 1785) (Odonata, Anisoptera, Gomphidae). Martinia 25:85–92

    Google Scholar 

  • Frati F, Piersanti S, Rebora M et al (2015) Scent of a Dragonfly: sex recognition in a polymorphic Coenagrionid. PLoS One 10:e0136697. https://doi.org/10.1371/journal.pone.0136697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frati F, Piersanti S, Rebora M et al (2016) Volatile cues can drive oviposition behaviour in Odonata. J Insect Physiol 91-92:34–38

    Article  CAS  PubMed  Google Scholar 

  • Gaino E, Rebora M (1996) Fine structure of flat-tipped antennal sensilla in three species of mayflies (Ephemeroptera). Invertebr Biol 115:145–149

    Article  Google Scholar 

  • Gaino E, Rebora M (1997) Antennal cuticular sensilla in some mayflies (Ephemeroptera). In: Landolt P, Sartori M (eds) Ephemeroptera & Plecoptera: Biology-Ecology-Systematics. MTL, Fribourg, pp 317–325

    Google Scholar 

  • Gaino E, Rebora M (1998) Ultrastructure of the antennal sensilla of the mayfly Baetis rhodani (Pictet) (Ephemeroptera: Baetidae). Int J Insect Morphol Embryol 27:143–149

    Article  Google Scholar 

  • Gaino E, Rebora M (1999) Larval antennal sensilla in water-living insects. Microsc Res Tech 47:440–457

    Article  CAS  PubMed  Google Scholar 

  • Gaino E, Rebora M (2001) Apical antennal sensilla in nymphs of Libellula depressa (Odonata: Libellulidae). Invertebr Biol 120:162–169

    Article  Google Scholar 

  • Gaino E, Piersanti S, Rebora M (2007) Ultrastructural organization of the larval spiracles in Libellula depressa L. (Anisoptera: Libellulidae). Odonatologica 36:373–379

    Google Scholar 

  • Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    Article  CAS  PubMed  Google Scholar 

  • Gall BG, Brodie Jr ED (2009) Behavioral avoidance of injured conspecific and predatory chemical stimuli by larvae of the aquatic caddisfly Hesperophylax occidentalis. Can J Zool 87:1009–1015

    Article  Google Scholar 

  • Gallio M, Ofstad TA, Macpherson LJ et al (2011) The coding of temperature in the Drosophila brain. Cell 144:614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullan PJ, Cranston PS (2006) The insects: an outline of entomology. Chapman & Hall, London

    Google Scholar 

  • Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439

    Article  CAS  PubMed  Google Scholar 

  • Hansson B, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    Article  CAS  PubMed  Google Scholar 

  • Hardersen S (2007) Telemetry of Anisoptera after emergence- first results (Odonata). Int J Odonatol 10:189–202

    Article  Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias J et al (1993) Dynamics of arthropod filiform hairs. I. Mathematical modelling of the hair and air motions. Philos Trans R Soc B 340:423–444

    Article  Google Scholar 

  • Hunger T, Steinbrecht RA (1998) Functional morphology of a double-walled multiporous olfactory sensillum: the sensillum coeloconicum of Bombyx mori (Insecta. Lepidoptera). Tissue Cell 30:14–29

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VD, Melnitsky SI (2011) Structure and morphological types of the antennal olfactory sensilla in Phryganeidae and Limnephilidae (Insecta: Trichoptera). Zoosymposia 5:210–234

    Google Scholar 

  • Ivanov VD, Melnitsky SI (2016) Diversity of the olfactory sensilla in caddis-flies (Trichoptera). Zoosymposia 10:224–233

    Google Scholar 

  • Jewett DK, Brigham DL, Bjostad LB (1996) Hesperophylax occidentalis (Trichoptera: Limnephilidae): electroantennogram structure-activity study of sex pheromone component 6-methylnonan-3-one. J Chem Ecol 22:123–137

    Article  CAS  PubMed  Google Scholar 

  • Kapoor NN (1985) External morphology and distribution of the antennal sensilla of the stonefly, Paragnetina media (Walker) (Plecoptera: Perlidae). Int J Insect Morphol Embryol 14:273–280

    Article  Google Scholar 

  • Kapoor NN (1987) Fine structure of the coniform sensillar complex on the antennal flagellum of the stonefly nymph Paragnetina media (Plecoptera: Perlidae). Can J Zool 65:1827–1832

    Article  Google Scholar 

  • Kapoor NN (1991) Antennal campaniform and coeloconic sensilla of the stonefly nymph, Paragnetina media (Walker) (Plecoptera: Perlidae). In: Alba-Tercedor J, Sanchez-Ortega A (eds) Overview and strategies of Ephemeroptera and Plecoptera. Sandhill Crane Press, Inc., Gainesville, FL, pp 39–46

    Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531

    Article  CAS  PubMed  Google Scholar 

  • Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286

    CAS  PubMed  Google Scholar 

  • Kriska G, Bernáth B, Horváth G (2007) Positive polarotaxis in a mayfly that never leaves the water surface: Polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148–154

    Article  CAS  PubMed  Google Scholar 

  • Laverack MS (1962) Responses of cuticular sense organs of the lobster, Homarus vulgaris. II. Hair-fan organs as pressure receptors. Comp Biochem Physiol 6:137–145

    Article  Google Scholar 

  • Löfstedt C, Hansson BS, Petersson E et al (1994) Pheromonal secretions from glands on the 5th abdominal sternite of hydropsychid and rhyacophilid caddisflies (Trichoptera). J Chem Ecol 20:153–170

    Article  PubMed  Google Scholar 

  • Löfstedt C, Bergmann J, Francke W et al (2008) Identification of a sex pheromone produced by sternal glands in females of the (Trichoptera) caddisfly Molanna angustata Curtis (Trichoptera, Molannidae). J Chem Ecol 34:220–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta. J Comp Physiol 111:153–170

    Article  Google Scholar 

  • Loftus R (1978) Peripheral thermal receptors. In: Ali MA (ed) Sensory ecology: reviews and perspectives, NATO Advanced Study Institutes Series, vol 18. Plenum, New York/London, pp 439–466

    Chapter  Google Scholar 

  • Ma ZS, Krings AW (2009) Insect sensory systems inspired computing and communications. Ad Hoc Netw 7:742–755

    Article  Google Scholar 

  • McIntosh AR, Peckarsky BL (1996) Differential behavioural responses of mayflies from streams with and without fish to trout odour. Freshw Biol 35:141–148

    Article  Google Scholar 

  • McIntosh AR, Peckarsky BL (2004) Are mayfly anti-predator responses to fish odour proportional to risk? Arch Hydrobiol 160:145–151

    Article  Google Scholar 

  • McIntosh AR, Peckarsky BL, Taylor BW (1999) Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 118:256–264

    Article  PubMed  Google Scholar 

  • Melnitsky SI, Ivanov VD (2011) Structure and localization of sensilla on antennaeof caddisflies (Insecta: Trichoptera). J Evol Biochem Physiol 47:593–602

    Article  Google Scholar 

  • Melnitsky SI, Ivanov VD (2016) Structure of the antennal olfactory sensilla in the genus Molanna (Trichoptera: Molannidae). Zoosymposia 10:292–300

    Google Scholar 

  • Melnitsky SI, Vladimir D, Ivanov VD et al (2018) Comparison of sensory structures on the antenna of different species of Philopotamidae (Insecta: Trichoptera). Arthropod Struct Dev 47:45–55

    Article  PubMed  Google Scholar 

  • Meritt DJ (2007) The organule concept of insect sense organs: sensory transduction and organule evolution. Adv Insect Physiol 33:192–242

    Article  CAS  Google Scholar 

  • Meurgey F, Faucheux MJ (2006a) Vibroreceptors and proprioceptors on the larval antennae of Erythromma lindenii (Sélys) (Zygoptera: Coenagrionidae). Odonatologica 35:255–264

    Google Scholar 

  • Meurgey F, Faucheux MJ (2006b) Organes sensoriels des antennes de la larve de Chalcolestes viridis (Van der Linden, 1825) (Odonata, Zygoptera, Lestidae). Martinia 22:167–171

    Google Scholar 

  • Michels J, Appel E, Gorb SN (2016) Functional diversity of resilin in Arthropoda. Beilstein J Nanotech 7:1241–1259

    Article  CAS  Google Scholar 

  • Missbach C, Dweck HKM, Vogel H et al (2014) Evolution of insect olfactory receptors. elife 3:1–22

    Google Scholar 

  • Mortensen L, Richardson JML (2008) Effects of chemical cues on foraging in damselfly larvae, Enallagma antennatum. J Insect Behav 21:285–295

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Cardé RT (2003) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532

    Article  Google Scholar 

  • Nishikawa M, Yokohari F, Ishibashi T (1992) Response characteristics of two types of cold receptors on the antennae of the cockroach, Periplaneta Americana L. J Comp Physiol A 171:299–307

    Article  Google Scholar 

  • Ode PR, Wissinger S (2006) Interaction between chemical and tactile cues in mayfly detection of stoneflies. Freshw Biol 30:351–357

    Article  Google Scholar 

  • Okano JI, Tayasu I, Nakano SI et al (2017) Differential responses of two ecologically similar case-bearing caddisfly species to a fish chemical cue: implications for a coexistence mechanism. Zool Sci 34:461–467

    Article  Google Scholar 

  • Peckarsky BL, Wilcox RS (1989) Stonefly nymphs use hydrodynamic cues to discriminate between prey. Oecologia 79:265–270

    Article  PubMed  Google Scholar 

  • Piersanti S, Rebora M (2018) The antennae of damselfly larvae. Arthropod Struct Dev 47:36–44

    Article  PubMed  Google Scholar 

  • Piersanti S, Rebora M, Salerno G et al (2007) Behavioural strategies of the larval dragonfly Libellula depressa (Odonata: Libellulidae) in drying pools. Ethol Ecol Evol 19:127–136

    Article  Google Scholar 

  • Piersanti S, Rebora M, Gaino E (2010) A scanning electron microscope study of the antennal sensilla in adult Zygoptera. Odonatologica 39:235–241

    Google Scholar 

  • Piersanti S, Rebora M, Almaas TJ et al (2011) Electrophysiological identification of thermo- and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa. J Insect Physiol 57:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Piersanti S, Frati F, Conti E et al (2014a) The sense of smell in Odonata: an electrophysiological screening. J Insect Physiol 70:49–58

    Article  CAS  PubMed  Google Scholar 

  • Piersanti S, Frati F, Conti E et al (2014b) First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol 62:26–31

    Article  CAS  PubMed  Google Scholar 

  • Piersanti S, Rebora M, Lopez Rodriguez MJ et al (2017) A comparison between the adult antennal sensilla of the cavernicolous stonefly Protonemoura gevi and other epigean Protonemura species (Plecoptera: Nemouridae) in a biological context. Ann Soc Entomol Fr 53:47–54

    Article  Google Scholar 

  • Rebora M, Gaino E (2008) The antennal sensilla of the nymph of Ephemera danica. In: Hauer FR, Stanford JA, Newell RL (eds) International advances in the ecology, zoogeography and systematics of mayflies and stoneflies. University of California Press, Berkeley, CA, pp 307–312

    Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2004) Visual and mechanical cues in prey detection by the larva of Libellula depressa (Odonata: Libellulidae). Ethol Ecol Evol 16:133–144

    Article  Google Scholar 

  • Rebora M, Piersanti S, Salerno G, Conti E, Gaino E (2007a) Water deprivation tolerance and humidity response in a larval dragonfly: a possible adaptation for survival in drying ponds. Physiol Entomol 32:121–126

    Article  Google Scholar 

  • Rebora M, Piersanti S, Almaas TJ et al (2007b) Hygroreceptors in the larva of Libellula depressa (Odonata: Libellulidae). J Insect Physiol 53:550–558

    Article  CAS  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2008) The antennal sensilla of the adult of Libellula depressa (Odonata: Libellulidae). Arthropod Struct Dev 37:504–510

    Article  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2009a) A comparative investigation of the antennal sensilla of adult Anisoptera. Odonatologica 38:329–340

    Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2009b) The antennal sensilla of adult mayflies: Rhithrogena semicolorata as a case study. Micron 40:571–576

    Article  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2010) The antennal sensory function in the oldest pterygote insects: an ultrastructural overview. In: Méndez Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex Research Center, Badajoz, pp 137–145

    Google Scholar 

  • Rebora M, Salerno G, Piersanti S, Dell’Otto A, Gaino E (2012) Olfaction in dragonflies: electrophysiological evidence. J Insect Physiol 58:270–277

    Article  CAS  PubMed  Google Scholar 

  • Rebora M, Dell’Otto A, Rybak J et al (2013) The antennal lobe of Libellula depressa (Odonata, Libellulidae). Zoology 116:205–214

    Article  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Salerno G, Gorb S (2015) The Antenna of a burrowing dragonfly larva, Onychogomphus forcipatus (Anisoptera,Gomphidae). Arthropod Struct Dev 44:595–603

    Article  PubMed  Google Scholar 

  • Rebora M, Tierno de Figueroa JM, Piersanti S (2016) Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae). Arthropod Struct Dev 45:552–561

    Article  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Frati F et al (2017) Antennal responses to volatile organic compounds in a stonefly. J Insect Physiol 98:231–2376

    Article  CAS  PubMed  Google Scholar 

  • Rebora M, Frati F, Piersanti S et al (2018) Field tests of multiple sensory cues in sex recognition and harassment of a colour polymorphic damselfly. Anim Behav 136:127–136

    Article  Google Scholar 

  • Schaller D (1982) Structural and functional classification of antennal sensilla of the cockroach, Leucophea maderae. Cell Tissue Res 225:129–142

    Article  CAS  PubMed  Google Scholar 

  • Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122

    Article  Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Article  Google Scholar 

  • Scrimgeour GJ, Culp JM, Cash KJ (1994) Anti-predator responses of mayfly larvae to conspecific and predator stimuli. J N Am Benthol Soc 13:299–309

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155:495–505

    Article  Google Scholar 

  • Siepielski AM, Fallon E, Boersma K (2016) Predator olfactory cues generate a foraging–predation trade-off through prey apprehension. R Soc Open Sci 3:150537

    Article  PubMed  PubMed Central  Google Scholar 

  • Slifer EH (1977) Sense organs on the antennal flagellum of Mayflies (Ephemeroptera). J Morphol 153:355–362

    Article  PubMed  Google Scholar 

  • Slifer EH, Sekhon SS (1971) Structures on the antennal flagellum of a caddisfly, Frenesia missa (Trichoptera, Limnephilidae). J Morphol 135:373–388

    Article  PubMed  Google Scholar 

  • Slifer EH, Sekhon SS (1972) Sense organs on the antennal flagella of damselflies and dragonflies (Odonata). Int J Insect Morphol Embryol 1:289–300

    Article  Google Scholar 

  • Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245

    Article  Google Scholar 

  • Steinbrecht RA (1998) Bimodal thermo-and hygrosensitive sensilla. In: Harrison FW, Locke M (eds) Microscopic Anatomy of Invertebrates 11B. Wiley-Liss, New York, pp 405–422

    Google Scholar 

  • Stoks R (2001) Food stress and predator induced stress shape developmental performance in a damselfly. Oecologia 127:222–229

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y et al (1998) Evolution, discovery and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Brown SM et al (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Suhling F, Müller O (1996) Die Flußjungfern Europas. Magdeburg: Westarp-Wiss. Spektrum Akad. Verlag, Heidelberg

    Google Scholar 

  • Suhling F, Sahlen G, Gorb S et al (2015) Order Odonata. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s Freshwater Invertebrates. Academic Press, New York, pp 893–932

    Chapter  Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I Mechanical properties of the receptors hairs. J Comp Physiol 118:13–31

    Article  Google Scholar 

  • Thurm U (1965) An insect mechanoreceptor. I. Fine structure and adequate stimulus. Cold Spring Harb Symp Quant Biol 30:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tichy H, Loftus R (1996) Hygroreceptors in insects and a spider: humidity transduction models. Naturwissenschaften 83:255–263

    CAS  Google Scholar 

  • Tichy H, Hellwig M, Kallina W (2017) Revisiting theories of humidity transduction: a focus on electrophysiological data. Front Physiol 8:1–5

    Article  Google Scholar 

  • Tierno de Figueroa JM, Luzon-Ortega JM, Sànchez-Ortega A (1998) Imaginal biology of Hemimelaena flaviventris (Pictet, 1841) (Plecoptera, Perlodidae). Ann Zool Fenn 35:225–230

    Google Scholar 

  • Tozer W (1982) External antennal morphology of the adult and larva of Nectopsyche albida (Walker) (Trichoptera: Leptoceridae). Freshw Invertebr Biol 1:35–43

    Article  Google Scholar 

  • Tuchina O, Groh KG, Talarico G et al (2014) Morphology and histochemistry of the aesthetasc associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea). PLoS One 9(5):e96430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuthill JC, Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26(20):1022–1038

    Article  CAS  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159

    Article  CAS  PubMed  Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117

    Article  Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39:816–833

    Article  CAS  PubMed  Google Scholar 

  • Williams DD (1987) A laboratory study of predator-prey interactions of stoneflies and mayflies. Freshw Biol 17:471–490

    Article  Google Scholar 

  • Wisenden BD (2000) Olfactory assessment of predation risk in the aquatic environment. Philos Trans R Soc Lond Ser B Biol Sci 355(1401):1205–1208

    Article  CAS  Google Scholar 

  • Wisenden BD, Chivers DP, Smith RJF (1997) Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. J Chem Ecol 23:137–151

    Article  CAS  Google Scholar 

  • Yao CA, Ignell R, Carlson JR (2005) Chemosensory Coding by Neurons in the Coeloconic Sensilla of the Drosophila Antenna. J Neurosci 25:8359–8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokohari F (1999) Hygro- and thermoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Berlin, pp 191–210

    Google Scholar 

  • Yokohari F, Tominaga Y, Ando M et al (1975) An antennal hygroreceptive sensillum of the cockroach. J Electron Microsc 24:291–293

    Google Scholar 

  • Yuvaraj JK, Andersson MN, Anderbrant O et al (2018) Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron 111:9–18

    Article  PubMed  Google Scholar 

  • Zacharuk R (1980) Ultrastructure and function of insect chemosensilla. Annu Rev Entomol 25:27–48

    Article  Google Scholar 

  • Zacharuk R (1985) Antennae and sensilla. In: Gilbert LI, Kerkut GA (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 1–70

    Google Scholar 

  • Zacharuk R, Ru-Siu Yin L, Blue SG (1971) Fine structure of the antenna and its sensory cone in larvae of Aedes aegypti (L.). J Morphol 135:273–298

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Frandsen PB, Holzenthal RW et al (2016) The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Phil Trans R Soc B 371:20160025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Piersanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rebora, M., Salerno, G., Piersanti, S. (2019). Aquatic Insect Sensilla: Morphology and Function. In: Del-Claro, K., Guillermo, R. (eds) Aquatic Insects. Springer, Cham. https://doi.org/10.1007/978-3-030-16327-3_7

Download citation

Publish with us

Policies and ethics