Skip to main content

The Biotic Environment: Multiple Interactions in an Aquatic World

  • Chapter
  • First Online:
Aquatic Insects

Abstract

The distribution and diversity of aquatic insects is a result of their interactions with the environment and other organisms. Right from the egg to larval and adult stages, insects must deal with a great biodiversity of natural enemies and mutualists. Such relationships evolved for millions of years in such a way that aquatic insects developed behavioral, ecological, and evolutionary strategies to cope with predation, parasitism, and competition. In the same way, they have joined forces with other organisms to solve problems, such as the interaction with gut bacteria to digest cellulose. These strategies and selective forces not only predict behavior and occurrence of aquatic insects, but also shape their diversity, community structures, and population dynamics. In this chapter, we sought to bring to the reader a useful source of information and a background for future studies. Although our current knowledge on species interactions in freshwater habitats allows us to discuss several topics, there is an open field of possibilities and gaps to be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan JD (1995) Predation and its consequences, Stream Ecology. Springer, Dordrecht, pp 163–185

    Google Scholar 

  • Akira Shimizu, (1992) Nesting behavior of the semi-aquatic spider wasp,Anoplius eous, which transports its prey on the surface film of water (Hymenoptera, Pompilidae). Journal of Ethology 10 (2):85-102

    Article  Google Scholar 

  • Amelia K. Ward, Clifford N. Dahm, Kenneth W. Cummins, NOSTOC (CYANOPHYTA) PRODUCTIVITY IN OREGON STREAM ECOSYSTEMS: INVERTEBRATE INFLUENCES AND DIFFERENCES BETWEEN MORPHOLOGICAL TYPES1. Journal of Phycology 21 (2):223-227

    Google Scholar 

  • Anderson NH, Cargill AS (1987) Nutritional ecology of aquatic detritivorous insects. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, 903–925

    Google Scholar 

  • Anderson RA, Koellaf JC, Hurd H (1999) The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc R Soc Lond B Biol Sci 266(1430):1729–1733

    Article  CAS  Google Scholar 

  • Andrade MR, Albeny-Simões DANIEL, Breaux JA, Juliano SA, Lima E (2017) Are behavioural responses to predation cues linked across life cycle stages? Ecol Entomol 42(1):77–85

    Article  Google Scholar 

  • Arsuffi TL, Suberkropp K (1988) Effects of fungal mycelia and enzymatically degraded leaves on feeding and performance of caddisfly (Trichoptera) larvae. J N Am Benthol Soc 7(3):205–211

    Article  Google Scholar 

  • Auld JR, Relyea RA (2011) Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol Ecol 25(1):189–202

    Article  Google Scholar 

  • Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffman AA (2016) Fitness of wAlbB Wolbachia Infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg 94(3):507–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Babbitt K, Jordan F (1996) Predation on Bufo terrestris tadpoles: effects of cover and predator identity. Copeia 1996:485–488

    Article  Google Scholar 

  • Bartlett, L., & Connor, E. F. (2014). Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interactions, 8(4), 339-348.

    Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36(6):1078–1090

    Article  Google Scholar 

  • Balian EV, Segers H, Leveque C, Martens K (2008) An introduction to the freshwater animal diversity assessment (FADA) project. Hydrobiologia 595:3–8

    Article  Google Scholar 

  • Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91(1–2):83–94

    Article  Google Scholar 

  • Behringer DC, Karvonen A, Bojko J (2018) Parasite avoidance behaviours in aquatic environments. Philos Trans R Soc B Biol Sci 373(1751)

    Article  Google Scholar 

  • Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35:651–673

    Article  Google Scholar 

  • Benfield EF (1974) Autohemorrhage in two stoneflies (Plecoptera) and its effectiveness as a defense mechanism. Ann Entomol Soc Am 67(5):739–742

    Article  Google Scholar 

  • Bennett, A. M. (2007). Global diversity of hymenopterans (Hymenoptera; Insecta) in freshwater. In Freshwater Animal Diversity Assessment (pp. 529-534). Springer, Dordrecht.

    Google Scholar 

  • Boonsoong B (2016) Phoretic associations between Nanocladius asiaticus (Diptera, Chironomidae) and its hosts Gestroiella (Heteroptera, Naucoridae) and Euphaea masoni (Odonata, Euphaeidae) in streams in Western Thailand. Ann Limnol Int J Limnol 52:163–169. EDP Sciences

    Article  Google Scholar 

  • Böttger K (1972) Biological and ecological studies on the life cycle of freshwater-mites II. The life cycle of Limnesia maculata and Unionicola crassipes. Int Rev Ges Hydrobiol Hydrogr 57(2):263–319

    Article  Google Scholar 

  • Böttger K (1976) Types of parasitism by larvae of water mites (Acari: Hydrachnellae). Freshw Biol 6(6):497–500

    Article  Google Scholar 

  • Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97(6):1160–1170

    Article  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Chae J-s, Pusterla N, Johnson E, DeRock E, Lawler SP, Madigan JE (2000) Infection of aquatic insects with trematode metacercariae carrying Ehrlichia Risticii, the cause of potomac horse fever. J Med Entomol 37(4):619–625

    Article  CAS  PubMed  Google Scholar 

  • Chase J (1999) Food web effects of prey size refuge: variable interactions and alternative stable equilibria. Am Nat 154:559–570

    Article  PubMed  Google Scholar 

  • Chung N, Suberkropp K (2009) Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae). Freshw Biol 54(11):2212–2224

    Article  CAS  Google Scholar 

  • Coccia C, Boyero L, Green AJ (2014) Can differential predation of native and alien corixids explain the success of Trichocorixa verticalis verticalis (Hemiptera, Corixidae) in the Iberian Peninsula? Hydrobiologia 734(1):115–123

    Article  Google Scholar 

  • Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 9(1):375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Harley Books, Colchester, p 829

    Google Scholar 

  • Córdoba-Aguilar A, Munguía-Steyer R (2013) The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS One 8(10):e76246. https://doi.org/10.1371/journal.pone.0076246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10(1):147–172

    Article  Google Scholar 

  • Dahl J, Peckarsky BL (2002) Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology 83(6):1620–1634

    Article  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2012) Ecologia das interações plantas-animais: Uma abordagem ecológico-evolutiva. Technical Books Editora

    Google Scholar 

  • Del-Claro K, Rico-Gray V, Torezan-Silingardi HM, Alves-Silva E, Fagundes R, Lange D, Dáttilo W, Vilela AA, Aguirre A, Rodriguez-Morales D (2016) Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insect Soc 63(2):207–221

    Article  Google Scholar 

  • DeWitt TJ (1998) Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. J Evol Biol 11(4):465–480

    Article  Google Scholar 

  • Duffield RM, Blum MS, Wallace JB, Lloyd HA, Regnier FE (1977) Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis (Trichoptera: Limnephilidae). J Chem Ecol 3(6):649–656

    Article  CAS  Google Scholar 

  • Elliott JM (1982) The life cycle and spatial distribution of the aquatic parasitoid Agriotypus armatus (Hymenoptera: Agriotypidae) and its caddis host Silo pallipes (Trichoptera: Goeridae). J Anim Ecol 51:923–941

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–580

    Article  CAS  PubMed  Google Scholar 

  • Esch GW, Barger MA, Fellis KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol 42(2):304–312

    Article  PubMed  Google Scholar 

  • Eveland LL, Bohenek JR, Silberbush A, Resetarits WJ Jr. (2016) Detection of fish and newt kairomones by ovipositing mosquitoes. Chemical Signals in Vertebrates 13 (ed. by B. A.)

    Google Scholar 

  • Feitosa MCB, Querino RB, Hamada N (2016) Association of Anagrus amazonensis Triapitsyn, Querino & Feitosa (Hymenoptera, Mymaridae) with aquatic insects in upland streams and floodplain lakes in central Amazonia, Brazil. Rev Brasil Entomol 60:267–269

    Article  Google Scholar 

  • Ferrington LC Jr, Lichtwardt RW, Hayford B, Williams MC (2005) Symbiotic Harpellales (Trichomycetes) in Tasmanian aquatic insects. Mycologia 97(1):254–262

    Article  PubMed  Google Scholar 

  • Fincke OM (1984) Giant damselflies in a tropical forest: reproductive biologyof Megaloprepus coerulatus with notes on Mecistogaster (Zygoptera: Pseudostigmatidae). Adv Odonatol 2(1):13–27

    Google Scholar 

  • Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100(1–2):118–127

    Article  PubMed  Google Scholar 

  • Fusari, L. M., Roque, F. D. O., & Hamada, N. (2014). Systematics of Oukuriella Epler, 1986, including a revision of the species associated with freshwater sponges. Insect Systematics & Evolution, 45(2), 117-157.

    Google Scholar 

  • E. S. Gabitzsch, C. D. Blair, B. J. Beaty, (2006) Effect of La Crosse Virus Infection on Insemination Rates in Female Aedes triseriatus (Diptera: Culicidae). Journal of Medical Entomology 43 (5):850-852

    Article  CAS  PubMed  Google Scholar 

  • Godwin CM, Whitaker EA, Cotner JB (2017) Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. Ecology 98(3):820–829

    Article  PubMed  Google Scholar 

  • González-Tokman D, Córdoba-Aguilar A, González-Santoyo I, Lanz-Mendoza H (2011) Infection effects on feeding and territorial behaviour in a predatory insect in the wild. Anim Behav 81(6):1185–1194

    Article  Google Scholar 

  • Grabner DS (2017) Hidden diversity: parasites of stream arthropods. Freshw Biol 62:52–64

    Article  Google Scholar 

  • Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38(1):251–273

    Article  Google Scholar 

  • Guillermo-Ferreira R, Del-Claro K (2011) Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. Int J Odonatol 14(3):275–279

    Article  Google Scholar 

  • Guillermo-Ferreira R, Vilela DS (2013) New records of Forcipomyia (Pterobosca) incubans (Diptera: Ceratopogonidae) parasitizing wings of Odonata in Brazil. Biota Neotrop 13(1):360–362

    Article  Google Scholar 

  • Hayashi M, Ohba S-Y (2018) Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol J Linn Soc 125(2):315–320

    Article  Google Scholar 

  • Henrikson B-I (1988) The absence of antipredator behavior in the larvae of Leucorrhinia dubia (Odonata) and the consequences for their distribution. Oikos:179–183

    Google Scholar 

  • Hering D, Plachter H (1997) Riparian ground beetles (Coleoptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111(2):261–270

    Article  PubMed  Google Scholar 

  • Hirayama H, Kasuya E (2009) Oviposition depth in response to egg parasitism in the water strider: high-risk experience promotes deeper oviposition. Anim Behav 78(4):935–941

    Article  Google Scholar 

  • Hirayama H, Kasuya E (2015) Parasitoid avoidance behavior is not triggered by airborne cues in a semi-aquatic bug. Hydrobiologia 745:195–200

    Article  Google Scholar 

  • Hirayama T, Yoshida T, Nagasaki O (2014) The life history and host-searching behaviour of the aquatic parasitoid wasp Apsilops japonicus (Hymenoptera: Ichneumonidae), a parasitoid of the aquatic moth Neoshoenobia testacealis (Lepidoptera: Crambidae). J Nat Hist 48(15–16):959–967

    Article  Google Scholar 

  • Honkavaara J, Rantala MJ, Suhonen J (2009) Mating status, immune defence, and multi-parasite burden in the damselfly Coenagrion armatum. Entomol Exp Appl 132(2):165–171

    Article  Google Scholar 

  • Hopkins GR, Gall BG, Brodie ED (2011) Ontogenetic shift in efficacy of antipredator mechanisms in a top aquatic predator, Anax junius (Odonata: Aeshnidae). Ethology 117(12):1093–1100

    Article  Google Scholar 

  • Hoverman, J. T., Auld, J. R., & Relyea, R. A. (2005). Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia, 144(3), 481-491.

    Google Scholar 

  • Ingley SJ, Bybee SM, Tennessen KJ, Whiting MF, Branham MA (2012) Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). Zool Scr 41(6):637–650

    Article  Google Scholar 

  • Jackson DJ (1966) Observations on the Biology of Caraphractus Cinctus Walker (Hymenoptera: Mymaridae), a Parasitoid of the Eggs of Dytiscidae (Coleoptera): III. The Adult Life and Sex Ratio. Trans R Entomol Soc Lond 118(2):23–49

    Article  Google Scholar 

  • Jackson BT, Brewster CC, Paulson SL (2012) La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J Med Entomol 49(6):1424–1429

    Article  PubMed  Google Scholar 

  • Jäger-Zürn I, Spies M, Philbrick CT Bove CP, Mora-Olivo A (2013) Plant galls (cecidia) in the neotropical water plant family Podostemaceae induced by larvae of Chironomidae. Spixiana 36(1):97–112

    Google Scholar 

  • Johansson F (2002) Reaction norms and production costs of predator-induced morphological defences in a larval dragonfly (Leucorrhinia dubia: Odonata). Can J Zool 80(5):944–950

    Article  Google Scholar 

  • Johansson F, Samuelsson L (1994) Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia 100(1–2):74–79

    Article  CAS  PubMed  Google Scholar 

  • Ke YH, Ju YM (2015) Two rare ophiocordycipitaceous fungi newly recorded in Taiwan. Bot Stud 56(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenneth W. Cummins, (1973) Trophic Relations of Aquatic Insects. Annual Review of Entomology 18 (1):183-206

    Article  Google Scholar 

  • Kenneth W. Cummins, (2016) Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology 75 (s1)

    Google Scholar 

  • Kehr A, Schnack J (1991) Predator prey relationship between Giant water bugs (Belostoma oxyurum) and larval anurans (Bufo arenarum). Alytes 9:61–69

    Google Scholar 

  • Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E (2004) Fatty acid composition of aquatic insect larvae Stictochironomus Pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comp Biochem Physiol B Biochem Mol Biol 139(4):705–711

    Article  PubMed  CAS  Google Scholar 

  • Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626

    Article  CAS  PubMed  Google Scholar 

  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437(7060):880

    Article  CAS  PubMed  Google Scholar 

  • Koella JC et al (2002) Stage-specific manipulation of a mosquito’s host-seeking behavior by the malaria parasite Plasmodium gallinaceum. Behav Ecol 13:816–820

    Article  Google Scholar 

  • Kohler SL (2008) The ecology of host–parasite interactions in aquatic insects. In: Lancaster J, Briers R, Macadam C (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 55–80

    Chapter  Google Scholar 

  • Kohler SL, Hoiland WK (2001) Population regulation in an aquatic insect: the role of disease. Ecology 82(8):2294–2305

    Article  Google Scholar 

  • Kohler SL, Wiley MJ (1997) Pathogen outbreaks reveal large-scale effects of competition in stream communities. Ecology 78(7):2164–2176

    Article  Google Scholar 

  • Kula RR, Gates MG, Buffington ML, Harms NE (2017) Parasitoid Wasps (Hymenoptera: Apocrita) Associated with Sagittaria latifolia Willd. and Sagittaria platyphylla (Engelm.) J. G. sm. (Alismatales: Alismataceae) in the Nearctic Region. Proc Entomol Soc Wash 19(2):215–217

    Article  Google Scholar 

  • Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian journal of zoology, 68(4), 619-640.

    Google Scholar 

  • Lima-Camara TN, Bruno RV, Luz PM, Castro MG, Lourenço-de-Oliveira R, Sorgine MHF (2011) Dengue infection increases the locomotor activity of Aedes aegypti females. PLoS One 6(3):e17690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logue JB, Stedmon CA, Kellerman AM, Nielsen NJ, Andersson AF, Laudon H, Lindström ES, Kritzberg ES (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10(3):533–545

    Article  CAS  PubMed  Google Scholar 

  • Lowenberger CA, Rau ME (1994) Plagiorchis elegans: emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology 109(1):65–72

    Article  PubMed  Google Scholar 

  • Luttbeg B, Kerby JL (2005) Are scared prey as good as dead? Trends Ecol Evol 20(8):416–418

    Article  PubMed  Google Scholar 

  • Mackay RJ, Kalff J (1973) Ecology of two related species of caddis fly larvae in the organic substrates of a woodland stream. Ecology 54(3):499–511

    Article  Google Scholar 

  • Majdi N, Traunspurger W, Richardson JS, Lecerf A (2015) Small stonefly predators affect microbenthic and meiobenthic communities in stream leaf packs. Freshw Biol 60(9):1930–1943

    Article  Google Scholar 

  • Marden JH (1989) Bodybuilding dragonflies: costs and benefits of maximizing flight muscle. Physiol Zool 62(2):505–521

    Article  Google Scholar 

  • Marsollier L, Stinear T, Aubry J, Saint André JP, Robert R, Legras P, Manceau AL, Audrain C, Bourdon S, Kouakou H, Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol 70(2):1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens A, Grabow K (2011) Early stadium damselfly larvae (Odonata: Coenagrionidae) as prey of an aquatic plant, Utricularia australis. Int J Odonatol 14(1):101–104

    Article  Google Scholar 

  • Y. J. McGaha, (1952) The Limnological Relations of Insects to Certain Aquatic Flowering Plants. Transactions of the American Microscopical Society 71 (4):355

    Article  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (1996). Aquatic insects of North America. Kendall Hunt, Dubuque.

    Google Scholar 

  • Menke A (1979) Family Belostomatidae - Giant water bugs. In: Menke A (ed) The semiaquatic and aquatic Hemiptera of California (Heteroptera: Hemiptera). University of California Press, Berkeley, CA, pp 76–86

    Google Scholar 

  • Moore KA, Williams DD (1990) Novel strategies in the complex defense repertoire of a stonefly (Pteronarcys dorsata) nymph. Oikos:49–56

    Google Scholar 

  • Nair GA, Morse JC, Marshall SA (2015) Aquatic insects and their societal benefits and risks. J Entomol Zool Stud 3(3)

    Google Scholar 

  • Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci 98(1):166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T (2014) Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc Natl Acad Sci 111(28):10257–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nislow KH, Molles MC Jr (1993) The influence of larval case design on vulnerability of Limnephilus frijole (Trichoptera) to predation. Freshw Biol 29(3):411–417

    Article  Google Scholar 

  • Paetzold A, Schubert CJ, Tockner K (2005) Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8(7):748–759

    Article  Google Scholar 

  • Parajulee, M. N., & Phillips, T. W. (1995). Survivorship and cannibalism in Lyctocoris campestris (Hemiptera: Anthocoridae): effects of density, prey availability, and temperature. Journal of Entomological Science, 30(1), 1-8.

    Google Scholar 

  • Peckarsky BL (1980) Predator-prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61(4):932–943

    Article  Google Scholar 

  • Peckarsky BL (1987) Mayfly cerci as defense against stonefly predation: deflection and detection. Oikos:161–170

    Google Scholar 

  • Peckarsky BL, Dodson SI (1980) Do stonefly predators influence benthic distributions in streams? Ecology 61(6):1275–1282

    Article  Google Scholar 

  • Peláez-Rodríguez, M., Trivinho-Strixino, S., & Urso-Guimarães, M. V. (2003). Galls in rhizome of an aquatic macrophyte, Eichhornia azurea (Swartz) kunth (Pontederiaceae), in Jataí Ecological Station, Luiz Antônio, SP, Brazil. Brazilian Journal of Biology, 63(4), 723-726.

    Google Scholar 

  • Poulin R (1995) “Adaptive” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25(12):1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75(3):277–293

    Article  CAS  PubMed  Google Scholar 

  • Proctor H, Pritchard G (1989) Neglected predators: water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. J N Am Benthol Soc 8(1):100–111

    Article  Google Scholar 

  • Querino, R. B., & Hamada, N. (2009). An aquatic microhymenopterous egg-parasitoid of Argia insipida Hagen in Selys (Odonata: Coenagrionidae) and biological observations in the Central Amazon, Brazil. Neotropical entomology, 38(3), 346-351.

    Google Scholar 

  • Ready PD (2008) Leishmania manipulates sandfly feeding to enhance its transmission. Trends Parasitol 24(4):151–153

    Article  PubMed  Google Scholar 

  • Resetarits Jr WJ, Binckley CA (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology, 90(4), 869-876.

    Article  PubMed  Google Scholar 

  • Roberts D (2017) Mosquito larvae can detect water vibration patterns from a nearby predator. Bull Entomol Res 107(4):499–505

    Article  CAS  PubMed  Google Scholar 

  • Rogers ME (2012) The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol 3:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3(6):e91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roque FDO, Trivinho-Strixino S, Jancso M, Fragoso EN (2004) Records of Chironomidae larvae living on other aquatic animals in Brazil. Biota Neotrop 4(2):1–9

    Google Scholar 

  • Rossignol PA, Ribeiro JMC, Spielman ANDA (1986) Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. Am J Trop Med Hyg 35(2):277–279

    Article  CAS  PubMed  Google Scholar 

  • Sabo JL, Bastow JL, Power ME (2002) Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J N Am Benthol Soc 21(2):336–343

    Article  Google Scholar 

  • Salinas AS, Costa RN, Orrico VG, Solé M (2018) Tadpoles of the bromeliad-dwelling frog Phyllodytes luteolus are able to prey on mosquito larvae. Ethol Ecol Evol 30(6):485–496

    Article  Google Scholar 

  • Santolamazza S, Baquero E, Cordero-Rivera A (2011) Incidence of Anagrus obscurus (Hymenoptera: Mymaridae) egg parasitism on Calopteryx haemorrhoidalis and Platycnemis pennipes (Odonata: Calopterygidae: Platycnemididae) in Italy. Entomol Sci 14(3):366–369

    Article  Google Scholar 

  • Sanzone DM et al (2003) Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia 134(2):238–250

    Article  CAS  PubMed  Google Scholar 

  • Sazama EJ, Bosch MJ, Shouldis CS, Ouellette SP, Wesner JS (2017) Incidence of Wolbachia in aquatic insects. Ecol Evol 7:1165–1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Schilder RJ, Marden JH (2007) Metabolic syndrome in insects triggered by gut microbes. J Diabetes Sci Technol 1(5):794–796

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholte EJ, Knols BG, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4(1)

    Google Scholar 

  • Schwartz, A., & Koella, J. C. (2001). Trade-offs, conflicts of interest and manipulation in Plasmodium–mosquito interactions. Trends in parasitology, 17(4), 189-194.

    Google Scholar 

  • Sih A (1982) Foraging strategies and the avoidance of predation by an aquatic insect, Notonecta hoffmanni. Ecology 63(3):786–796

    Article  Google Scholar 

  • Silberbush A, Resetarits WJ Jr (2017) Mosquito female response to the presence of larvivorous fish does not match threat to larvae. Ecol Entomol 42(5):595–600

    Article  Google Scholar 

  • Sinsabaugh RL, Linkins AE, Benfield EF (1985) Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66(5):1464–1471

    Article  CAS  Google Scholar 

  • Smallegange, R. C., van Gemert, G. J., van de Vegte-Bolmer, M., Gezan, S., Takken, W., Sauerwein, R. W., & Logan, J. G. (2013). Malaria infected mosquitoes express enhanced attraction to human odor. PloS one, 8(5), e63602.

    Google Scholar 

  • Smith B (1988) Host-parasite interaction and impact of larval water mites on insects. Annu Rev Entomol 33(1):487–507

    Article  Google Scholar 

  • Soluk DA, Clifford HF (1985) Microhabitat shifts and substrate selection by the psammophilous predator Pseudiron centralis McDunnough (Ephemeroptera: Heptageniidae). Can J Zool 63(7):1539–1543

    Article  Google Scholar 

  • Stechmann DH (1978) Eiablage, Parasitismus und postparasitische Entwicklung von Arrenurus-Arten (Hydrachnellae, Acari). Z Parasitenkd 57(2):169–188

    Article  Google Scholar 

  • Stoehr AM, Kokko H (2006) Sexual dimorphism in immunocompetence: what does life-history theory predict? Behav Ecol 17(5):751–756

    Article  Google Scholar 

  • Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Suberkropp K (1992) Interactions with invertebrates. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes, Ecological Studies, vol 94. Springer-Verlag, Berlin, pp 118–134

    Chapter  Google Scholar 

  • Swart C, Felgenhauer B (2003) Structure and function of the mouthparts and salivary gland complex of the Giant Waterbug, Belostoma lutarium (Stal) (Hemiptera: Belostomatidae). Ann Entomol Soc Am 96:870–882

    Article  Google Scholar 

  • Turlings, T. C., & Erb, M. (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual review of entomology, 63, 433-452.

    Google Scholar 

  • Urso-Guimarães, M. V. (2014). New species of Lopesia (Cecidomyiidae, Diptera) associated with Eichhornia azurea (Sw.) Kunth (Pontederiaceae) from Brazil. Iheringia Série Zoologia, 104(4).

    Article  Google Scholar 

  • Vance SA, Peckarsky BL (1997) The effect of mermithid parasitism on predation of nymphal Baetis bicaudatus (Ephemeroptera) by invertebrates. Oecologia 110(1):147–152

    Article  PubMed  Google Scholar 

  • Ward AK, Dahm CN, Cummins KW (1985) Nostoc (Cyanophyta) productivity in oregon stream ecosystems: invertebrate influences and differences between morphological types 1. Journal of Phycology 21(2):223–227

    Article  Google Scholar 

  • Westveer JJ, Verdonschot PF, Verdonschot RC (2018) Biotic interactions enhance survival and fitness in the caddisfly Micropterna sequax (Trichoptera: Limnephilidae). Hydrobiologia 818(1):31–41

    Article  Google Scholar 

  • White DA (1969) The infection of immature aquatic insects by larval Paragordius (Nematomorpha). Great Basin Nat 29(1):10

    Google Scholar 

  • Wildermuth H, Martens A (2007) The feeding action of Forcipomyia paludis (Diptera: Ceratopogonidae), a parasite of Odonata imagines. Int J Odonatol 10(2):249–255

    Article  Google Scholar 

  • Wiles CM, Bolek MG (2015) Damselflies (Zygoptera) as paratenic hosts for Serpinema trispinosum and its report from turtle hosts from Oklahoma, USA. Folia Parasit 62:019

    Article  CAS  Google Scholar 

  • Williams D, Williams S (2017) Aquatic insects and their potential to contribute to the diet of the globally expanding human population. Insects 8(3):72

    Article  PubMed Central  Google Scholar 

  • Wissinger SA, Sparks GB, Rouse GL, Brown WS, Steltzer H (1996) Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands. Ecology 77(8):2421–2430

    Article  Google Scholar 

  • Wissinger S, Steinmetz J, Alexander JS, Brown W (2004) Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Oecologia 138(1):39–47

    Article  PubMed  Google Scholar 

  • Wissinger SA et al (2006) Predator defense along a permanence gradient: roles of case structure, behavior, and developmental phenology in caddisflies. Oecologia 147(4):667–678

    Article  PubMed  Google Scholar 

  • Wong Sato AA, Kato M (2017) Pollination system of Corylopsis gotoana (Hamamelidaceae) and its stonefly (Plecoptera) co-pollinator. Plant Species Biol 32(4):440–447

    Article  Google Scholar 

  • Yang E et al (2016) Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nat Commun 7:13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee DA, Skiff JF (2014) Interspecific competition of a new invasive mosquito, Culex coronator, and two container mosquitoes, Aedes albopictus and Cx. quinquefasciatus (Diptera: Culicidae), across different detritus environments. J Med Entomol 51(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Zancarini A, Echenique-Subiabre I, Debroas D, Taïb N, Quiblier C, Humbert JF (2017) Deciphering Biodiversity and Interactions between Bacteria and Microeukaryotes within Epilithic Biofilms from the Loue River, France. Sci Rep 7(1):1–13002E

    Article  CAS  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic microbial ecology 28(2):141–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendes, G.C., da Silva, G.G., Ricioli, L.S., Guillermo, R. (2019). The Biotic Environment: Multiple Interactions in an Aquatic World. In: Del-Claro, K., Guillermo, R. (eds) Aquatic Insects. Springer, Cham. https://doi.org/10.1007/978-3-030-16327-3_5

Download citation

Publish with us

Policies and ethics