Skip to main content

Sexual Conflict in Water Striders, Dragonflies and Diving Beetles

  • Chapter
  • First Online:
Aquatic Insects

Abstract

The field of sexual selection has been historically dominated by a stereotyped view of the sexual roles, with competing males and selective females, but in recent decades there has been a paradigm switch, with the emergence and dominance of the concept of sexual conflict. Put simply, there is sexual conflict when the optimum value for a trait (or a group of traits) is different for females and males. Although the recent literature mainly considers sexual conflict as a process separate from the other well-known processes in the field of postcopulatory sexual selection (sperm competition and cryptic female choice), our approach is that sexual conflict is the consequence of several pressures related to natural and sexual selection, and not a process by itself. Therefore, here we consider sexual conflict as a part of a continuum of sexual selection mechanisms. We concentrate on the effects of sexual conflict on reproductive behaviour of three groups of aquatic insects, whose habitats differ markedly, water striders, odonates and diving beetles, but also include some examples of studies addressing sexual conflict in other groups of aquatic insects. Our hypothesis is that the dimensional structure of the habitat will affect the intensity of sexual conflict over mating rate, copulation duration and postcopulatory guarding. There is abundant evidence and comprehensive reviews of the conflict over mating rates in water striders, odonates and, to a lesser degree, diving beetles. The bi-dimensionality of the water surface allows an easy monopolisation of females by males in this microhabitat, and water striders conform to this rule, so that the commonest mating system is characterised by strong conflicts and struggles before and after copulation. For animals like odonates, which are fast fliers and can use diverse terrestrial microhabitats, the opportunities for males to force females to copulate are certainly limited. In the case of diving beetles, the situation seems more favourable for the females, as they could control male approaches by hiding easily in the vegetation, or even in the case of extreme male density they could fly away and move to a different water body. The sexual conflict over mating duration is also intense in water striders, and also relevant in the other reviewed groups. In the field of postcopulatory conflicts, odonates have offered the best examples of male adaptations and female counter-adaptations, which are even more elaborated when studying the evolution of genitalia. We end by summarising our main conclusions and propose some ideas for future work. We stress that a comprehensive understanding of sexual conflicts in animals requires the study of both male and female anatomies, as well as their behaviours, avoiding assumptions or gender stereotypes, which have historically biased research to a male-view approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ah-King M, Barron AB, Herberstein ME (2014) Genital evolution: why are females still understudied? PLoS Biol 12:1–7. https://doi.org/10.1371/journal.pbio.1001851

    Article  CAS  Google Scholar 

  • Aiken RB (1992) The mating behaviour of a boreal water beetle, Dytiscus alaskanus (Coleoptera Dytiscidae). Ethol Ecol Evol 4:245–254. https://doi.org/10.1080/08927014.1992.9523136

    Article  Google Scholar 

  • Alcock J (1979) Multiple mating in Calopteryx maculata (Odonata: Calopterygidae) and the advantage of non-contact guarding by males. J Nat Hist 13:439–446

    Article  Google Scholar 

  • Alcock J (1982) Postcopulatory mate guarding by males of the damselfly Hetaerina vulnerata Selys (Odonata: Calopterygidae). Anim Behav 30:99–107

    Article  Google Scholar 

  • Alcock J (1994) Postinsemination associations between males and females in insects: The mate guarding hypothesis. Annu Rev Entomol 39:1–21

    Article  Google Scholar 

  • Amano H, Hayashi K, Kasuya E (2008) Avoidance of egg parasitism through submerged oviposition by tandem pairs in the water strider, Aquarius paludum insularis (Heteroptera: Gerridae). Ecol Entomol 33:560–563. https://doi.org/10.1111/j.1365-2311.2008.00988.x

    Article  Google Scholar 

  • Andrés JA, Cordero-Rivera A (2000) Copulation duration and fertilization success in a damselfly: An example of cryptic female choice? Anim Behav 59:695–703

    Article  PubMed  Google Scholar 

  • Arnqvist G (1997) The evolution of water strider mating systems: causes and consequences of sexual conflicts. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 146–163

    Chapter  Google Scholar 

  • Arnqvist G, Danielsson I (1999) Copulatory behavior, genital morphology, and male fertilization success in water striders. Evolution 53:147–156

    Article  PubMed  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    Article  CAS  PubMed  Google Scholar 

  • Arnqvist G, Rowe L (2002) Correlated evolution of male and female morphologies in water striders. Evolution 56:936–947. https://doi.org/10.1554/0014-3820(2002)056[0936:CEOMAF]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Book  Google Scholar 

  • Arnqvist G, Jones TM, Elgar MA (2006) Sex-role reversed nuptial feeding reduces male kleptoparasitism of females in Zeus bugs (Heteroptera; Veliidae). Biol Lett 2:491–493. https://doi.org/10.1098/rsbl.2006.0545

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker RR (1983) Insect territoriality. Annu Rev Entomol 28:65–89

    Article  Google Scholar 

  • Bañuelos Irusta J, Araújo A (2007) Reproductive tactics of sexes and fitness in the dragonfly, Diastatops obscura. J Insect Sci 7:24

    Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Brennan PLR, Prum RO (2015) Mechanisms and evidence of genital coevolution: the role of natural selection, mate choice, and sexual conflict. In: Rice WR, Gavrilets S (eds) The genetics and biology of sexual conflict. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 385–413

    Google Scholar 

  • Byers CJ, Eason PK (2009) Conspecifics and their posture influence site choice and oviposition in the damselfly Argia moesta. Ethology 115:721–730

    Article  Google Scholar 

  • Campbell V, Fairbairn DJ (2001) Prolonged copulation and the internal dynamics of sperm transfer in the water strider Aquarius remigis. Can J Zool 79:1801–1812. https://doi.org/10.1139/cjz-79-10-1801

    Article  Google Scholar 

  • Carranza J (2009) Defining sexual selection as sex-dependent selection. Anim Behav 77:749–751

    Article  Google Scholar 

  • Cassis G, Hodgins M, Weir TA, Tatarnic NJ (2018) Phylogenetic reclassification and genitalic morphology of the small water strider genus Nesidovelia Andersen & Weir and allied Microveliinae (Hemiptera:Veliidae). Aust Entomol 57:92–106. https://doi.org/10.1111/aen.12273

    Article  Google Scholar 

  • Cleavall L (2009) Description of Thermonectus nigrofasciatus and Rhantus binotatus (Coleoptera: Dytiscidae) mating behavior. University of New Mexico, Albuquerque

    Google Scholar 

  • Clutton BTH, Parker G (1995) Sexual coercion in animal societies. Anim Behav 49:1345–1365

    Article  Google Scholar 

  • Corbet PS (1957) The life-history of the Emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J Anim Ecol 26:1–69

    Article  Google Scholar 

  • Corbet PS (1962) A biology of dragonflies. Classey (fac-simile 1983), Faringdom

    Google Scholar 

  • Cordero A (1989) Reproductive behaviour of Ischnura graellsii (Rambur) (Zygoptera: Coenagrionidae). Odonatologica 18:237–244

    Google Scholar 

  • Cordero A (1990) The adaptive significance of the prolonged copulations of the damselfly, Ischnura graellsii (Odonata: Coenagrionidae). Anim Behav 40:43–48

    Article  Google Scholar 

  • Cordero A (1992) Sexual cannibalism in the damselfly species Ischnura graellsii (Odonata: Coenagrionidae). Entomol Gen 17:17–20

    Article  Google Scholar 

  • Cordero A (1999) Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly. J Insect Behav 12:27–37

    Article  Google Scholar 

  • Cordero A, Andrés JA (2002) Male coercion and convenience polyandry in a Calopterygid damselfly (Odonata). J Insect Sci 2:14. Available online: insectscience.org/2.14

    Article  Google Scholar 

  • Cordero Rivera A, Córdoba-Aguilar A (2016) Selección postcópula: competencia espermática. In: Etología adaptativa: el comportamiento como producto de la selección natural. p 479–504

    Google Scholar 

  • Cordero A, Santolamazza-Carbone S, Utzeri C (1992) A twenty-four-hours-lasting tandem in Coenagrion scitulum (Ramb.) in the laboratory (Zygoptera: Coenagrionidae). Not Odonatol 3:166–167

    Google Scholar 

  • Cordero A, Santolamazza-Carbone S, Utzeri C (1998) Mating opportunities and mating costs are reduced in androchrome female damselflies, Ischnura elegans (Odonata). Anim Behav 55:185–197

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Rivera A (2002) Influencia de la selección sexual sobre el comportamiento reproductor de los odonatos. In: Evolución: la base de la biología. p 497–507

    Google Scholar 

  • Cordero-Rivera A (2016) Sperm removal during copulation confirmed in the oldest extant damselfly, Hemiphlebia mirabilis. Peer J 4:e2077. https://doi.org/10.7717/peerj.2077

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordero-Rivera A (2017a) Behavioral diversity (ethodiversity): a neglected level in the study of biodiversity. Front Ecol Evol 5:1–7. https://doi.org/10.3389/fevo.2017.00007

    Article  Google Scholar 

  • Cordero-Rivera A (2017b) Sexual conflict and the evolution of genitalia: male damselflies remove more sperm when mating with a heterospecific female. Sci Rep 7:7844. https://doi.org/10.1038/s41598-017-08390-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero-Rivera A, Córdoba-Aguilar A (2010) Selective forces propelling genitalic evolution in Odonata. In: Leonard J, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 332–352

    Google Scholar 

  • Cordero-Rivera A, Egido Pérez FJ (1998) Mating frequency, population density and female polychromatism in the damselfly _Ischnura graellsii_: an analysis of four natural populations. Etología 6:61–67

    Google Scholar 

  • Cordero-Rivera A, Zhang H (2018) Ethological uniqueness of a damselfly with no near relatives: the relevance of behaviour as part of biodiversity. Anim Biodivers Conserv 41:161–174

    Article  Google Scholar 

  • Cordero-Rivera A, Utzeri C, Santolamazza-Carbone S (1999) Emergence and adult behaviour of Macromia splendens (Pictet) in Galicia, northwestern Spain (Anisoptera: Corduliidae). Odonatologica 28:333–342

    Google Scholar 

  • Cordero-Rivera A, Andrés JA, Córdoba-Aguilar A, Utzeri C (2004) Postmating sexual selection: allopatric evolution of sperm competition mechanisms and genital morphology in calopterygid damselflies (Insecta: Odonata). Evolution 58:349–359

    Article  CAS  PubMed  Google Scholar 

  • Córdoba-Aguilar A (2000) Reproductive behaviour of the territorial damselfly Calopteryx haemorrhoidalis asturica Ocharan (Zygoptera: Calopterygidae). Odonatologica 29:295–305

    Google Scholar 

  • Córdoba-Aguilar A (2006) Sperm ejection as a possible cryptic female choice mechanism in Odonata (Insecta). Physiol Entomol 31:146–153

    Article  Google Scholar 

  • Córdoba-Aguilar A, Cordero-Rivera A (2008) Cryptic female choice and sexual conflict. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies. Model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 189–202

    Chapter  Google Scholar 

  • Córdoba-Aguilar A, Uhía E, Cordero Rivera A (2003) Sperm competition in Odonata (Insecta): the evolution of female sperm storage and rivals’ sperm displacement. J Zool 261:381–398. https://doi.org/10.1017/S0952836903004357

    Article  Google Scholar 

  • Córdoba-Aguilar A, Serrano-Meneses MA, Cordero-Rivera A (2009) Copulation duration in nonterritorial odonate species lasts longer than in territorial species. Ann Entomol Soc Am 102:694–701. https://doi.org/10.1603/008.102.0414

    Article  Google Scholar 

  • Córdoba-Aguilar A, Vrech DE, Rivas M et al (2015) Allometry of male grasping apparatus in odonates does not suggest physical coercion of females. J Insect Behav 28:15–25

    Article  Google Scholar 

  • Daly M (1978) The cost of mating. Am Nat 112:771–774

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Dettner K, Schwinger G (1980) Defensive substances from pygidial glands of water beetles. Biochem Syst Ecol 8:89–95. https://doi.org/10.1016/0305-1978(80)90032-0

    Article  CAS  Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  • Eberhard WG (2006) Sexually antagonistic coevolution in insects is associated with only limited morphological diversity. J Evol Biol 19:657–681

    Article  CAS  PubMed  Google Scholar 

  • Eberhard WG (2010) Evolution of genitalia: theories, evidence, and new directions. Genetica 138:5–18

    Article  PubMed  Google Scholar 

  • Fairn ER, Schulte-Hostedde AI, Alarie Y (2007) Sexual selection on accessory glands, genitalia and protarsal pads in the whirligig beetle Dineutus nigrior Roberts (Coleoptera: Gyrinidae). Ethology 113:257–266

    Article  Google Scholar 

  • Fincke OM (1986) Underwater oviposition in a damselfly (Odonata: Coenagrionidae) favors male vigilance, and multiple mating by females. Behav Ecol Sociobiol 18:405–412

    Article  Google Scholar 

  • Fincke OM (1997) Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice. Biol J Linn Soc 60:201–220

    Article  Google Scholar 

  • Fincke OM (2004) Polymorphic signals of harassed female odonates and the males that learn them support a novel frequency-dependent model. Anim Behav 67:833–845

    Article  Google Scholar 

  • Guignot F (1933) Les Hydrocanthares de France. Les Frères Douladoure, Toulouse

    Google Scholar 

  • Heberdey RF (1931) Zur Entwicklungsgeschichte, Vergleichenden Anatomie und Physiologie der Weiblichen Geschlechtsausführwege der Insekten. Zeitschrift für Morphol und Ökologie der Tiere 22:416–586

    Article  Google Scholar 

  • Higginson DM, Pitnick S (2011) Evolution of intra-ejaculate sperm interactions: do sperm cooperate? Biol Rev 86:249–270. https://doi.org/10.1111/j.1469-185X.2010.00147.x

    Article  PubMed  Google Scholar 

  • Higginson DM, Miller KB, Segraves KA, Pitnick S (2012a) Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci 109:4538–4543. https://doi.org/10.1073/pnas.1111474109

    Article  PubMed  PubMed Central  Google Scholar 

  • Higginson DM, Miller KB, Segraves KA, Pitnick S (2012b) Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae). Evolution 66:1650–1661. https://doi.org/10.1111/j.1558-5646.2011.01532.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirayama H, Kasuya E (2008) Factors affecting submerged oviposition in a water strider: level of dissolved oxygen and male presence. Anim Behav 76:1919–1926. https://doi.org/10.1016/j.anbehav.2008.08.013

    Article  Google Scholar 

  • Keffer SL (2004) Morphology and evolution of water scorpion male genitalia (Heteroptera: Nepidae). Syst Entomol 29:142–172. https://doi.org/10.1111/j.0307-6970.2004.00236.x

    Article  Google Scholar 

  • Koch K (2006) Effects of male harassment on females’ oviposition behaviour in Libellulidae (Odonata). Int J Odonatol 9:71–80. https://doi.org/10.1080/13887890.2006.9748264

    Article  Google Scholar 

  • Latty TM (2006) Flexible mate guarding tactics in the dragonfly Sympetrum internum (Odonata: Libellulidae). J Insect Behav 19:469–477. https://doi.org/10.1007/s10905-006-9037-0

    Article  Google Scholar 

  • Lauer MJ, Sih A, Krupa JJ (1996) Male density, female density and inter-sexual conflict in a stream-dwelling insect. Anim Behav 52:929–939. https://doi.org/10.1006/anbe.1996.0241

    Article  Google Scholar 

  • Leonard JL, Córdoba-Aguilar A (2010) The evolution of primary sexual characters in animals. Oxford University Press, Oxford

    Google Scholar 

  • Lindeboom M (1998) Post-copulatory behaviour in Calopteryx females (Insecta, Odonata, Calopterygidae). Int J Odonatol 1:175–184

    Article  Google Scholar 

  • Liu X, Hayashi F, Lavine LC, Yang D (2015) Is diversification in male reproductive traits driven by evolutionary trade-offs between weapons and nuptial gifts? Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2015.0247

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzo-Carballa MO, Beatty CD, Utzeri C et al (2009) Parthenogenetic Ischnura hastata revisited: present status and notes on population ecology and behaviour (Odonata: Coenagrionidae). Int J Odonatol 12:395–411

    Article  Google Scholar 

  • Machado G, Trumbo ST (2018) Parental care. In: Córdoba-Aguilar A, González-Tokman D, González-Santoyo I (eds) Insect behavior. Oxford University Press, Oxford, pp 203–2018

    Google Scholar 

  • Madsen BL (2012) Submersion respiration in small diving beetles (Dytiscidae). Aquat Insects 34:57–76. https://doi.org/10.1080/01650424.2012.643026

    Article  Google Scholar 

  • Matsubara K, Hironaka M (2005) Postcopulatory guarding behaviour in a territorial damselfly, Pseudagrion p. pilidorsum (Brauer), for submerged ovipositing females (Zygoptera: Coenagrionidae). Odonatologica 34:387–396

    Google Scholar 

  • Milam EL (2010) Looking for a few good males, female choice in evolutionary biology. John Hopkins University Press, Baltimore

    Google Scholar 

  • Miller PL (1987a) An examination of the prolonged copulations of Ischnura elegans (Vander Linden) (Zygoptera: Coenagrionidae). Odonatologica 16:37–56

    Google Scholar 

  • Miller PL (1987b) Sperm competition in Ischnura elegans (Vander Linden) (Zygoptera: Coenagrionidae). Odonatologica 16:201–207

    Google Scholar 

  • Miller KB (2001) On the phylogeny of the Dytiscidae (Insecta: Coleoptera) with emphasis on the morphology of the female reproductive system. Insect Syst Evol 32:45–92

    Article  Google Scholar 

  • Miller KB (2003) The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol J Linn Soc 79:359–388

    Article  Google Scholar 

  • Miller KB, Bergsten J (2014) Predaceous diving beetle sexual systems. In: Yee DA (ed) Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae). Springer, Dordrecht, pp 199–233

    Google Scholar 

  • Opphenheimer SD, Waage JK (1987) Hand-pairing: a new technique for obtaining copulations within and between Calopteryx species (Zygoptera: Calopterygidae). Odonatologica 16:291–296

    Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:535–567. https://doi.org/10.1111/j.1469-185X.1970.tb01176.x

    Article  Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 123–166

    Google Scholar 

  • Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JC, Rowe L (2018) Sexual conflict in its ecological setting. Philos Trans R Soc Lond B Biol Sci 373:20170418

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry JC, Garroway CJ, Rowe L (2017) The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race. Ecol Lett 20:1107–1117. https://doi.org/10.1111/ele.12806

    Article  PubMed  Google Scholar 

  • Polhemus JT (1974) The austrina group of the genus Microvelia (Hemiptera; Veliidae). Gt Basin Nat 34:207–217

    Google Scholar 

  • Queller DC, Strassmann JE (2018) Evolutionary conflict. Annu Rev Ecol Evol Syst 49:73–93. https://doi.org/10.1146/annurev-ecolsys-110617-062527

    Article  Google Scholar 

  • Reinhardt K, Anthes N, Lange R (2014) Copulatory wounding and traumatic insemination. In: Rice WR, Gavrilets S (eds) The genetics and biology of sexual conflict. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 115–140

    Google Scholar 

  • Rowe RJ (1978) Ischnura aurora (Brauer), a dragonfly with unusual mating behaviour (Zygoptera: Coenagrionidae). Odonatologica 7:375–383

    Google Scholar 

  • Rowe L (1992) Convenience polyandry in a water strider: foraging conflicts and female control of copulation frequency and guarding duration. Anim Behav 44:189–202

    Article  Google Scholar 

  • Rowe L (1994) The costs of mating and mate choice in water striders. Anim Behav 48:1049–1056

    Article  Google Scholar 

  • Rowe L, Arnqvist G (2002) Sexually antagonistic coevolution in a mating system: combining experimental and comparative approaches to address evolutionary processes. Evolution 56:754–767

    Article  PubMed  Google Scholar 

  • Rowe L, Arnqvist G, Sih A, Krupa J (1994) Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends Ecol Evol 9:289–293

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein DI (1989) Sperm competition in the water strider, Gerris remigis. Anim Behav 38:631–636. https://doi.org/10.1016/S0003-3472(89)80008-9

    Article  Google Scholar 

  • Sánchez-Guillén RA, Córdoba-Aguilar A, Cordero-Rivera A, Wellenreuther M (2014) Rapid evolution of prezygotic barriers in non-territorial damselflies. Biol J Linn Soc 113:485–496

    Article  Google Scholar 

  • Santolamazza S, Baquero E, Cordero-Rivera A (2011) Incidence of Anagrus obscurus (Hymenoptera: Mymaridae) egg parasitism on Calopteryx haemorrhoidalis and Platycnemis pennipes (Odonata: Calopterygidae: Platycnemididae) in Italy. Entomol Sci 14:366–369. https://doi.org/10.1111/j.1479-8298.2011.00454.x

    Article  Google Scholar 

  • Sattler W (1957) Beobachtungen zur Fortpflanzung von Gerris najas De Geer (Heteroptera). Zeitschrift für Morphol und Ökologie der Tiere 45:411–428

    Article  Google Scholar 

  • Schneider JM (2014) Sexual Cannibalism as a Manifestation of Sexual Conflict. Cold Spring Harb Perspect Biol 6(11):a017731. https://doi.org/10.1101/cshperspect.a017731

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp D, Muir F (1912) The comparative anatomy of the male genital tube in Coleoptera. Trans R Entomol Soc London 60:477–532

    Article  Google Scholar 

  • Shuker DM (2014) Sexual selection theory. In: Shuker DM, Simmons LW (eds) The evolution of insect mating systems. Oxford University Press, Oxford, pp 20–41

    Chapter  Google Scholar 

  • Simmons LW (2014) Sexual selection and genital evolution. Aust J Entomol 53:1–7

    Article  Google Scholar 

  • Spence JR, Anderson NM (1994) Biology of water striders: interactions between systematics and ecology. Annu Rev Entomol 39:101–128. https://doi.org/10.1146/annurev.en.39.010194.000533

    Article  Google Scholar 

  • Stoks R, De Bruyn L, Matthysen E (1997) The adaptiveness of intense contact mate guarding by males of the Emerald Damselfly, Lestes sponsa (Odonata, Lestidae): The male’s perspective. J Insect Behav 10:289–298

    Article  Google Scholar 

  • Thornhill R (1983) Cryptic female choice in the scorpionfly Harpobittacus nigriceps and its implications. Am Nat 122:765–788

    Article  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871-1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Uhía E, Cordero-Rivera A (2005) Male damselflies detect female mating status: importance for postcopulatory sexual selection. Anim Behav 69:797–804

    Article  Google Scholar 

  • Utzeri C (1988) Female “refusal display” versus male “threat display” in Zygoptera: is it a case of intraspecific imitation? Odonatologica 17:45–54

    Google Scholar 

  • Utzeri C, Ercoli C (2004) Disturbance by unpaired males prolongs postcopulatory guarding duration in the damselfly Lestes virens (Charpentier) (Zygoptera: Lestidae). Odonatologica 33:291–301

    Google Scholar 

  • Van Gossum H, Sherratt TN, Cordero-Rivera A (2008) The evolution of sex-limited colour polymorphisms. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies. Model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 219–229

    Chapter  Google Scholar 

  • Waage JK (1979) Dual function of the damselfly penis: sperm removal and transfer. Science 203:916–918

    Article  CAS  PubMed  Google Scholar 

  • Waage JK (1984) Sperm competition and the evolution of odonate mating systems. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic Press, Orlando, pp 251–290

    Chapter  Google Scholar 

  • Wilcox RS (1984) Male copulatory guarding enhances female foraging in a water strider. Behav Ecol Sociobiol 15:171–174. https://doi.org/10.1007/BF00292971

    Article  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Yoshizawa K, Ferreira RL, Kamimura Y, Lienhard C (2014) Female penis, male vagina, and their correlated evolution in a cave insect. Curr Biol 24:1006–1010. https://doi.org/10.1016/j.cub.2014.03.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by a grant from the Spanish Ministry of Economy and Competitiveness, including FEDER funds (CGL2014-53140-P). ART was supported by a FPI grant (BES-2015-071965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Cordero-Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordero-Rivera, A., Rivas-Torres, A. (2019). Sexual Conflict in Water Striders, Dragonflies and Diving Beetles. In: Del-Claro, K., Guillermo, R. (eds) Aquatic Insects. Springer, Cham. https://doi.org/10.1007/978-3-030-16327-3_11

Download citation

Publish with us

Policies and ethics