Skip to main content

Cracking

  • Chapter
  • First Online:

Abstract

Cracking larger molecules converts heavy boiling fractions into high-value gasoline, kerosene, jet fuel, diesel, heating oils and fuel oils. It also generates light gases (including olefins). Cracking can be carried out by heat (thermal cracking) through free radical chemistry or by catalysis (catalytic cracking) through carbocation chemistry. Steam cracking is a major method to produce light olefins for polyolefins, polyesters and various chemicals. Cracking using catalysts is performed without hydrogen as fluidized catalytic cracking (FCC) and with excess hydrogen as hydrocracking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greensfelder BS, Voge HH, Good GM (1949) Catalytic and thermal cracking of pure hydrocarbons. Ind Eng Chem 41(11):2573–2584

    Article  CAS  Google Scholar 

  2. Zhu G, Xie C, Li Z, Wang X (2017) Catalytic processes for light olefin production (Chapter 36). In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, New York

    Google Scholar 

  3. https://www.quora.com/What-does-a-steam-cracker-look-like-and-what-are-its-essential-components. Accessed 6 Aug 2014

  4. Hsu CS, Robinson PR (2017) Gasoline production and blending (Chapter 17). In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, New York

    Chapter  Google Scholar 

  5. Speight J (2017) Fluid-bed catalytic cracking (Chapter 19). In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, Heidelberg

    Google Scholar 

  6. Avidan A, Edwards M, Owen H (1980) Experiments performed at constant coke production. Oil Gas J 88(1):52

    Google Scholar 

  7. von Ballmoos R, Harris DH, Magee JS (1995) Catalytic cracking (Section 3.10). Encyclopedia of Catalysis. Wiley, London, pp 1955–1985

    Google Scholar 

  8. Van Antwerpen FJ (1944) Thermofor catalytic cracking. Ind Eng Chem 36(8):694–698

    Article  Google Scholar 

  9. AIChE (2009) Chemical engineers and energy: In: Chemical engineers in action—innovation

    Google Scholar 

  10. Palmas P (2009) Traces of the history of RFCC and provides guidelines for choosing the appropriate regenerator style: https://www.uop.com/?document=uop-25-years-of-rfcc-innovation-tech-paper&download=1. A reprint from hydrocarbon engineering

  11. Park JI, Mochida M, Marah AMJ, Al-Mutairi A (2017) Modern approaches to hydrotreating catalysis (Chapter 21). In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, New York

    Google Scholar 

  12. Resid Upgrading, By Honey UOP: https://www.uop.com/processing-solutions/refining/residue-upgrading/#resid-fcc. Accessed 31 Aug 2016

  13. Honeywell UOP, “Catalyst Cooler,” https://www.uop.com/equipment/fcc/catalyst-cooler/. Accessed 1 Nov 2018

  14. Prime-G +: The benchmark technology for ultra-low sulfur gasoline by Axens: https://zh.scribd.com/doc/209103920/Prime-G. Accessed 20 Sep 2106

  15. Laan JV ConocoPhillips S Zorb Gasoline Sulfur Removal Technology: http://www.icheh.com/Files/Posts/Portal1/S-Zorb.pdf. Accessed 20 Sep 2016

  16. Schroder M (2010) Functional metal organic frameworks: gas storage. Sep Catal 293:175–205

    Google Scholar 

  17. Olah GA (1994) My search for carbocations and their role in chemistry. In: Nobel Lecture

    Google Scholar 

  18. Robinson PR, Dolbear GE (2017) Hydrocracking (Chapter 22). In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, New York

    Google Scholar 

  19. Bergius Process, Project Gutenberg, http://self.gutenberg.org/articles/Bergius_process. Retrieved 4 Aug 2015

  20. Lapinas AT, Klein MT, Gates BC, Macris A, Lyons JE (1991) Catalytic hydrogenation and hydrocracking of fluorene: reaction pathways, kinetics, and mechanisms. Ind Eng Chem Res 30(1):42–50

    Article  CAS  Google Scholar 

  21. https://archive.epa.gov/emergencies/docs/chem/web/pdf/tosco.pdf. Retrieved 9 Oct 2018

  22. Chevron Technology Marketing: LC Fining: http://www.chevrontechnologymarketing.com/CLGtech/lc_finishing.aspx Retrieved 4 Aug 2015

  23. Motaghi M, Ulrich B, Subramanian A (2011) Slurry-phase hydrocracking: possible solution to refining margins. Hydrocarbon Proces 90(2):37

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Samuel Hsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, C.S., Robinson, P.R. (2019). Cracking. In: Petroleum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-16275-7_11

Download citation

Publish with us

Policies and ethics