Skip to main content

On Block-Structured Integer Programming and Its Applications

  • Chapter
  • First Online:
Nonlinear Combinatorial Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 147))

  • 1651 Accesses

Abstract

Integer programming in a variable dimension is a crucial research topic that has received a considerable attention in recent years. A series of fixed parameter tractable (FPT) algorithms have been developed for a variety of integer programming that has a special block structure, and such results were later applied successfully in many classical combinatorial optimization problems to derive FPT or approximation algorithms. From a theoretical point of view, it is important to understand the overall landscape, and distinguish the structures of integer programming that are tractable vs. intractable or unknown so far. From the application point of view, it is important to understand how the structure of such integer programming is related to the structure of concrete combinatorial optimization problems. The goal of this survey is to summarize recent progress in theory and application of integer programming that has a block structure and point to important open problems in this research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we remark that by using proximity results or the standard bound from linear programming, we can always restrict that \(\log \|{\mathbf {u}}\|{ }_{\infty }+\log \|{\mathbf {l}}\|{ }_{\infty }\) is bounded by a polynomial.

References

  1. Altmanová, K., Knop, D., Kouteckỳ, M.: Evaluating and tuning n-fold integer programming. arXiv preprint arXiv:1802.09007 (2018)

    Google Scholar 

  2. Aschenbrenner, M., Hemmecke, R.: Finiteness theorems in stochastic integer programming. Found. Comput. Math. 7(2), 183–227 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chen, L., Marx, D.: Covering a tree with rooted subtrees–parameterized and approximation algorithms. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2801–2820. SIAM, Philadelphia (2018)

    Chapter  Google Scholar 

  4. Chen, L., Marx, D., Ye, D., Zhang, G.: Parameterized and approximation results for scheduling with a low rank processing time matrix. In: Proceedings of the Thirty-Fourth Symposium on Theoretical Aspects of Computer Science, STACS, pp. 22:1–22:14 (2017)

    Google Scholar 

  5. Chen, L., Xu, L.. Shi, W.: On the graver basis of block-structured integer programming. arXiv preprint arXiv:1805.03741 (2018)

    Google Scholar 

  6. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Caratheodory’s theorem. J. Comb. Theory B 40(1), 63–70 (1986)

    Article  MathSciNet  Google Scholar 

  7. De Loera, J.A., Hemmecke, R., Onn, S., Rothblum, U.G., Weismantel, R.: Convex integer maximization via graver bases. J. Pure Appl. Algebra 213(8), 1569–1577 (2009)

    Article  MathSciNet  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  9. Eisenbrand, F., Hunkenschröder, C., Klein, K.-M.: Faster algorithms for integer programs with block structure. arXiv preprint arXiv:1802.06289 (2018)

    Google Scholar 

  10. Fishburn, P.C.: Condorcet social choice functions. SIAM J. Appl. Math. 33(3), 469–489 (1977)

    Article  MathSciNet  Google Scholar 

  11. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)

    Article  MathSciNet  Google Scholar 

  12. Graver, J.E.: On the foundations of linear and integer linear programming i. Math. Program. 9(1), 207–226 (1975)

    Article  MathSciNet  Google Scholar 

  13. Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer minimization. Math. Program. 126(1), 97–117 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hemmecke, R., Onn, S., Romanchuk, L.: N-fold integer programming in cubic time. Math. Program. 137(1–2), 325–341 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hemmecke, R., Köppe, M., Weismantel, R.: Graver basis and proximity techniques for block-structured separable convex integer minimization problems. Math. Program. 145(1–2), 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM (JACM) 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  17. Hoşten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb. Theory A 114(2), 311–321 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jansen, K., Klein, K.-M., Maack, M., Rau, M.: Empowering the configuration-IP-new PTAS results for scheduling with setups times. arXiv preprint arXiv:1801.06460 (2018)

    Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972)

    Chapter  Google Scholar 

  20. Knop, D., Kouteckỳ, M.: Scheduling meets n-fold integer programming. J. Sched. 21(5), 493–503 (2018)

    Article  MathSciNet  Google Scholar 

  21. Knop, D., Kouteckỳ, M., Mnich, M.: Combinatorial n-fold integer programming and applications. arXiv preprint arXiv:1705.08657 (2017)

    Google Scholar 

  22. Kouteckỳ, M., Levin, A., Onn, S.: A parameterized strongly polynomial algorithm for block structured integer programs. arXiv preprint arXiv:1802.05859 (2018)

    Google Scholar 

  23. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  24. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Math. Program. 154(1–2), 533–562 (2015)

    Article  MathSciNet  Google Scholar 

  25. Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2010)

    Google Scholar 

  26. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM) 28(4), 765–768 (1981)

    Article  MathSciNet  Google Scholar 

  27. Sebö, A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455. University of Waterloo Press, Ontario (1990)

    Google Scholar 

  28. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L. (2019). On Block-Structured Integer Programming and Its Applications. In: Du, DZ., Pardalos, P., Zhang, Z. (eds) Nonlinear Combinatorial Optimization. Springer Optimization and Its Applications, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-030-16194-1_7

Download citation

Publish with us

Policies and ethics