Skip to main content

Feed Additives Impacts on Shellfish Microbiota, Health, and Development

  • Chapter
  • First Online:
Microbial Communities in Aquaculture Ecosystems

Abstract

Aquaculture industries have received extensive attention and undergone rapid expansion worldwide. Based on FAO statistics, the majority of aquaculture production among different continents takes place in Asian countries, which contribute 90% of worldwide aquaculture production. Intensification of aquaculture practices has often caused diseases to occur, which forces farmers to use chemicals extensively. The overuse or continuous use of antibiotics in aquaculture sanitary management has resulted in the emergence of drug-resistant genes and multiple antibiotic resistance (MAR) bacteria in the aquatic environment of fish and shellfish. During the past decade, numerous studies have considered application of different environmentally friendly feed additives as an alternative to antibiotics in shellfish aquaculture. According to the available literature, functional feed additives including pro-, pre-, and synbiotic are capable of improving digestive function, the utilisation of dietary ingredients, and shellfish performance. Also, numerous reports have shown that functional feed additives can regulate microbial community composition and modulate microbial balance, which will inhibit pathogens, and modulate host immune response to exert beneficial effects on aquatic animals. The present chapter of this book summarizes and discusses the available literature regarding possible effects of pro-, pre-, and synbiotics on shellfish growth performance, development, and immune parameters with special focus on mode of action. Also, areas of research that need more attention in future have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham TJ, Palaniappan R, Dhevendaran K (1997) Epibiotic infestation of luminous bacteria in penaeid shrimp Penaeus indicus (H. Milne Edwards) larvae. Oceanogr Lit Rev 3:530

    Google Scholar 

  • Antony SP, Singh ISB, Jose RM, Kumar PRA, Philip R (2011) Antimicrobial peptide gene expression in tiger shrimp, Penaeus monodon, in response to gram positive bacterial probionts and white spot virus challenge. Aquaculture 316:6–12

    Article  CAS  Google Scholar 

  • Anuta JD, Buentello A, Patnaik S, Hume ME, Mustafa A, Gatlin DM III, Lawrence AL (2016) Effects of dietary supplementation of a commercial prebiotic Previda® on survival, growth, immune responses and gut microbiota of Pacific white shrimp, Litopenaeus vannamei. Aquac Nutr 22:410–418

    Article  CAS  Google Scholar 

  • Arndt RE, Wagner EJ (2007) Enriched artemia and probiotic diets improve survival of Colorado River cutthroat trout larvae and fry. N Am J Aquac 69:190–196

    Article  Google Scholar 

  • Bernal MG, Marrero RM, Campa-Córdova ÁI, Mazón-Suástegui JM (2017) Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquac Int 25:927–939

    Article  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272

    Article  PubMed  Google Scholar 

  • Boonthai T, Vuthiphandchai V, Nimrat S (2011) Probiotic bacteria effects on growth and bacterial composition of black tiger shrimp (Penaeus monodon). Aquac Nutr 17:634–644

    Article  CAS  Google Scholar 

  • Cabello FC (2004) Antibiotics and aquaculture in Chile: implications for human and animal health. Rev Med Chil 132:1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Castex M, Lemaire P, Wabete N, Chim L (2009) Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture 294:306–313

    Article  CAS  Google Scholar 

  • Castex M, Daniels C, Chim L (2014) Probiotic applications in crustaceans. In: Merrifield D, Ringø E (eds) Aquaculture nutrition. Wiley, Oxford. https://doi.org/10.1002/9781118897263.ch11

    Chapter  Google Scholar 

  • Cerezuela R, Meseguer J, Esteban M (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquac Res Dev 1:1–7. https://doi.org/10.4172/2155-95546.S1-008

    Article  Google Scholar 

  • Chiu CH, Guu YK, Liu CH, Pan TM, Cheng W (2007) Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish Shellfish Immunol 23:364–367

    Article  CAS  PubMed  Google Scholar 

  • Daniels C, Hoseinifar SH (2014) Prebiotic applications in shellfish. In: Merrifield D, Ringø E (eds) Aquaculture nutrition. Wiley, Oxford, pp 401–418

    Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304:49–57

    Article  CAS  Google Scholar 

  • Das S, Ward LR, Burke C (2010) Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture 305:32–41

    Article  Google Scholar 

  • Dawood MAO, Koshio S, Esteban MÁ (2017) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquac 10:950–974

    Article  Google Scholar 

  • Direkbusarakom S, Yoshimizu M, Ezura Y, Ruangpan L, Danayadol Y (1998) Vibrio spp., the dominant flora in shrimp hatchery against some fish pathogenic viruses. J Mar Biotechnol 6:266–267

    CAS  PubMed  Google Scholar 

  • Dong C, Wang J (2013) Immunostimulatory effects of dietary fructooligosaccharides on red swamp crayfish, Procambarus clarkii (Girard). Aquac Res 44:1416–1424

    Article  CAS  Google Scholar 

  • Dong HB, Su YQ, Mao Y, You XX, Ding SX, Wang J (2013) Dietary supplementation with Bacillus can improve the growth and survival of the kuruma shrimp Marsupenaeus japonicus in high-temperature environments. Aquac Int 22:607–617

    Article  CAS  Google Scholar 

  • Dyrynda E, Pipe R, Ratcliffe N (1995) Host defence mechanisms in marine invertebrate larvae. Fish Shellfish Immunol 5:569–580

    Article  Google Scholar 

  • Eissa N, Abou-ElGheit E (2014) Dietary supplementation impacts of potential non-pathogenic isolates on growth performance, hematological parameters and disease resistance in Nile Tilapia (Oreochromis niloticus). J Vet Adv 25:712–719

    Article  Google Scholar 

  • Elston AR, Ford SE (2011) Shellfish diseases and health management. In: Shumway S (ed) Shellfish aquaculture and the environment. Wiley-Blackwell, Ames, pp 359–394

    Chapter  Google Scholar 

  • Escobar-Briones L, Olvera-Novoa MA, Puerto-Castillo C (2006) Avances sobre ecología microbiana del tracto digestivo de la tilapia y sus potenciales implicaciones. VIII Simposium internacional de Nutrición Acuícola. 15–17 de Noviembre. Universidad Autónoma de Nuevo León, Monterrey

    Google Scholar 

  • Fagutao FF, Koyama T, Kaizu A, Saito-Taki T, Kondo H, Aoki T, Hirono I (2009) Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidase. FEBS J 276:5298–5306

    Article  CAS  PubMed  Google Scholar 

  • FAO (2007) World review of fisheries and aquaculture. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Food and Agriculture Organization of the United Nations, Rome, pp 243–313

    Google Scholar 

  • Fernandes CF, Shahani KM (1990) Anticarcinogenic and immunological properties of dietary lactobacilli. J Food Prot 53:704–710

    Article  PubMed  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics: the scientific basis. Chapman & Hall, London, pp 1–8

    Chapter  Google Scholar 

  • Goldburg R, Naylor R (2005) Future seascapes, fishing, and fish farming. Front Ecol Environ 3:21–28

    Article  Google Scholar 

  • Goldburg R, Elliott MS, Naylor RL (2001) Marine aquaculture in the United States: environmental impacts and policy option. PEW Oceans Commission, Arlington

    Google Scholar 

  • Gollas-Galván T, Hernández-López J, Vargas-Albores F (1999) Prophenoloxidase from brown shrimp (Penaeus californiensis) hemocytes. Comp Biochem Physiol B Biochem Mol Biol 122:77–82

    Article  PubMed  Google Scholar 

  • Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14:136–145

    Article  CAS  PubMed  Google Scholar 

  • Greenlees KJ (2003) Animal drug human food safety toxicology and antimicrobial resistance—the square peg. Int J Toxicol 22:131–134

    Article  PubMed  Google Scholar 

  • Gullian M, Thompson F, Rodriguez J (2004) Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 233:1–14

    Article  Google Scholar 

  • Guo JJ, Liu KF, Cheng SH, Chang CI, Lay JJ, Hsu YO, Yang JY, Chen TI (2009) Selection of probiotic bacteria for use in shrimp larviculture. Aquac Res 40:609–618

    Article  CAS  Google Scholar 

  • Hai NV, Buller N, Fotedar R (2009) Effects of probiotics (Pseudomonas synxantha and Pseudomonas aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquac Res 40:590–602

    Article  Google Scholar 

  • Herich R, Levkut M (2002) Lactic acid bacteria, probiotics and immune system. Vet Med Czech 47:169–180

    Article  Google Scholar 

  • Holmblad T, Soderhall K (1999) Cell adhesion molecules and antioxidative enzymes in a crustacean; possible role in immunity. Aquaculture 172:111–123

    Article  CAS  Google Scholar 

  • Hose JE, Martin GG, Gerard AS (1990) A decapod haemocyte classification scheme integrating morphology, cytochemistry, and function. Biol Bull 178:33–45

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Esteban MÁ, Cuesta A, Sun Y-Z (2015a) Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev Fish Sci Aquac 23:315–328

    Article  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield D, Ringø E (2015b) In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac Nutr 23:111–118

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MÁ (2015c) Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol 45:27–32

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Ringø E, Shenavar Masouleh A, Esteban MÁ (2016) Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquac 8:89–102

    Article  Google Scholar 

  • Hoseinifar SH, Dadar M, Ringø E (2017a) Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquac Res 48:3987–4000

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Safari R, Dadar M (2017b) Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: insights from zebrafish model. Gen Comp Endocrinol 243:78–83

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Sun Y, Zhou Z (2017c) Prebiotics and synbiotics. In: Austin B, Newaj-Fyzul A (eds) Diagnosis and control of diseases of fish and shellfish. Wiley, Oxford. https://doi.org/10.1002/9781119152125.ch7

    Chapter  Google Scholar 

  • Hoseinifar SH, Sun Y-Z, Caipang CM (2017d) Short chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac Res 48:1380–1391

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Sun Y, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture: a review of current knowledge and future perspectives. Front Microbiol 9:2429

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiravanichpaisal P, Lee B, Soderhall K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213–236

    Article  CAS  PubMed  Google Scholar 

  • Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean hemocytes and haematopoiesis. Aquaculture 191:45–52

    Article  CAS  Google Scholar 

  • Johnson PT (1987) A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks on haemocytes. Dev Comp Immunol 11:679–704

    Article  CAS  PubMed  Google Scholar 

  • Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiol Immunol 32:67–73

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi B, Viswanath B Sai Gopal DVR (2013) Probiotics as antiviral agents in shrimp aquaculture J Pathog: 1–13. Article ID: 424123

    Article  Google Scholar 

  • Lazado CC, Caipang CMA (2014a) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39:78–89

    Article  CAS  PubMed  Google Scholar 

  • Lazado CC, Caipang CM (2014b) Bacterial viability differentially influences the immunomodulatory capabilities of potential host-derived probiotics in the intestinal epithelial cells of Atlantic cod Gadus morhua. J Appl Microbiol 116:990–998

    Article  CAS  PubMed  Google Scholar 

  • Lazado CC, Caipang CM, Estante EG (2015a) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45:2–12

    Article  CAS  PubMed  Google Scholar 

  • Lazado CC, Caipang CMA, Estante EG (2015b) Host-associated microorganisms of fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45:2–12

    Article  CAS  PubMed  Google Scholar 

  • Le TX, Munekage Y (2004) Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar Pollut Bull 49:922–929

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Lim WL, Teng AC, Ouwehand EM, Tuomola EM, Salminen S (2000) Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol 66:3692–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewus CB, Kaiser A, Montville JJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57:1683–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Burr GS, Gatlin DM III, Hume ME, Patnaik S, Castille FL, Lawrence AL (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. J Nutr 137:2763–2768

    Article  CAS  PubMed  Google Scholar 

  • Li JQ, Tan BP, Mai KS (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291:35–40

    Article  CAS  Google Scholar 

  • Li E, Xu C, Wang X, Wang S, Zhao Q, Zhang M, Qin JG, Chen L (2018a) Gut microbiota and its modulation for healthy farming of pacific white shrimp Litopenaeus vannamei. Rev Fish Sci Aquac 26:381–399

    Article  Google Scholar 

  • Li X, Ringø E, Hoseinifar SH, Lauzon H, Birkbeck H, Yang D (2018b) Adherence and colonisation of microorganisms in the fish gastrointestinal tract. Rev Aquac. https://doi.org/10.1111/raq.12248

  • Liu CH, Chiu CS, Ho PL, Wang SW (2009) Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol 107:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Rodman S, Neff RA, Nachman KE (2011) Veterinary drug residues in seafood inspected by the European Union, United States, Canada, and Japan from 2000 to 2009. Environ Sci Technol 45:7232–7240

    Article  CAS  PubMed  Google Scholar 

  • Marques MRF, Barracco MA (2000) Lectins, as non-self-recognition factors, in crustaceans. Aquaculture 191:23–44

    Article  CAS  Google Scholar 

  • Matozzo V, Marin MG (2010) The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: a first survey. Fish Shellfish Immunol 28:534–541

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL, Bradley G, Baker RTM, Davies SJ (2010a) Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Nutr 16:496–503

    Article  CAS  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010b) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH (2017) The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 70:391–397

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta K (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr 97:405–430

    Article  CAS  Google Scholar 

  • Montes AJ, Pugh DG (1993) The use of probiotics in animal food practise. Vet Med 88:282–288

    Google Scholar 

  • Mujeeb Rahiman KM, Jesmi Y, Thomas AP, Mohamed Hatha AA (2010) Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquac Res 41:120–134

    Article  Google Scholar 

  • Munaeni W, Yuhana M, Widanarni W (2014) Effect of micro-encapsulated synbiotic at different frequencies for luminous vibriosis control in white shrimp (Litopenaeus vannamei). Microbiol Indones 8:73–80

    Article  Google Scholar 

  • Najmi N, Yahyavi M, Haghshenas A (2018) Effect of enriched rotifer (Brachionus plicatilis) with probiotic lactobacilli on growth, survival and resistance indicators of western white shrimp (Litopenaeus vannamei) larvae. Iran J Fish Sci 17:11–20

    Google Scholar 

  • Nawaz A, Bakhsh Javaid A, Irshad S, Hoseinifar SH, Xiong H (2018) The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol 76:272–278

    Article  CAS  PubMed  Google Scholar 

  • Nimrat S, Suksawat S, Boonthai T, Vuthiphandchai V (2012) Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet Microbiol 159:443–450

    Article  PubMed  Google Scholar 

  • Nimrat S, Tanutpongpalin P, Sritunyalucksana K, Boonthai T, Vuthiphandchai V (2013) Enhancement of growth performance, digestive enzyme activities and disease resistance in black tiger shrimp (Penaeus monodon) postlarvae by potential probiotics. Aquac Int 21:655–666

    Article  CAS  Google Scholar 

  • Ninawe AS, Selvin J (2009) Probiotics in shrimp aquaculture: avenues and challenges probiotics in shrimp aquaculture. Crit Rev Microbiol 35:43–66

    Article  CAS  PubMed  Google Scholar 

  • Nyhlén L, Unestam T (1980) Wound reactions and Aphanomyces astaci growth in crayfish cuticle. J Invertebr Pathol 36:187–197

    Article  Google Scholar 

  • Oktaviana A, Widanarni, Yuhana M (2014) The use of synbiotic to prevent IMNV and Vibrio harveyi coinfection in Litopenaeus vannamei. Hayati J Biosci 21:121–126

    Article  Google Scholar 

  • Oosterveer P (2006) Globalization and sustainable consumption of shrimp: consumers and governance in the global space of flows. Int J Consum Stud 30:465–476

    Article  Google Scholar 

  • Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9:43–52

    Article  Google Scholar 

  • Pandiyan P, Balaraman D, Thirunavukkarasu R, George EGJ, Subaramaniyan K, Manikkam S, Sadayappan B (2013) Probiotics in aquaculture. Drug Invent Today 5:55–59

    Article  CAS  Google Scholar 

  • Prapavorarat A, Vatanavicharn T, Söderhäll K, Tassanakajon A (2010) A novel viral responsive protein is involved in hemocyte homeostasis in the black tiger shrimp, Penaeus monodon. J Biol Chem 285:21467–21477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratanapo S, Chulavatnatol M (1992) Monodin-induced agglutination of Vibrio vulnificus, a major infective bacterium in black tiger prawn (Penaeus monodon). Comp Biochem Physiol B 102:855–859

    Article  Google Scholar 

  • Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P (1998a) Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167:301–313

    Article  Google Scholar 

  • Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasveta P (1998b) Probiotics in aquaculture: a case study of probiotics for larvae of the black tiger shrimp Penaeus monodon. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 177–181

    Google Scholar 

  • Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191:271–288

    Article  CAS  Google Scholar 

  • Rengpipat S, Tunyanun A, Fast AW, Piyatiratitivorakul S, Menasveta P (2003) Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp Penaeus monodon fed a Bacillus probiotic. Dis Aquat Org 55:169–173

    Article  Google Scholar 

  • Rhodes G, Huys G, Swings J, McGann P, Hiney M, Smith P, Pickup RW (2000) Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Appl Environ Microbiol 66:3883–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringø E, Song SK (2016) Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac Nutr 22:4–24

    Article  CAS  Google Scholar 

  • Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in finfish: an update. In: Merrifield D, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley, Hoboken, pp 360–400

    Google Scholar 

  • Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK (2018) Lactic acid bacteria in finfish—an update. Front Microbiol 9:1818

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux MM, Pain A, Klimpel KR, Dhar AK (2002) The lipopolysaccharide and beta-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol 76:7140–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rurangwa E, Laranja JL, Van Houdt R, Delaedt Y, Geraylou Z, Van de Wiele T, Van Loo J, Van Craeyveld V, Courtin CM, Delcour JA (2009) Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono cultures in vitro. J Appl Microbiol 106:932–940

    Article  CAS  PubMed  Google Scholar 

  • Safari O, Shahsavani D, Paolucci M, Atash MMS (2014) Single or combined effects of fructo-and mannan oligosaccharide supplements on the growth performance, nutrient digestibility, immune responses and stress resistance of juvenile narrow clawed crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquaculture 432:192–203

    Article  CAS  Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault M, Cumming J, Franck A, Gibson G, Isolauri E, Moreau M, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80:S147–S171

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  CAS  PubMed  Google Scholar 

  • Septiani GR (2011) Pemberian Sinbiotik dengan frekuensi berbeda pada pakan udang vaname Litopenaeus vannamei untuk pencegahan IMNV (Infectious Myonecrosis Virus) [Thesis]. Bogor Agricultural University, Bogor

    Google Scholar 

  • Silva EF, Soares MA, Calazans NF, Vogeley JL, do Valle BC, Soares R, Peixoto S (2012) Effect of probiotic (Bacillus spp.) addition during larvae and postlarvae culture of the white shrimp Litopenaeus vannamei. Aquac Res 44:13–21

    Article  Google Scholar 

  • Smith VJ, Chisholm JRS (1992) Non-cellular immunity in crustaceans. Fish Shellfish Immunol 2:1–31

    Article  Google Scholar 

  • Söderhäll K, Cerenius L (1992) Crustacean immunity. Annu Rev Fish Dis 2:3–23

    Article  Google Scholar 

  • Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7:229–239

    Article  PubMed  Google Scholar 

  • Sritunyalucksana K, Söderhäll K (2000) The proPO and clotting system in crustaceans. Aquaculture 191:53–69

    Article  CAS  Google Scholar 

  • Tseng DY, Ho PL, Huang SY, Cheng SC, Shiu YL, Chiu CS, Liu CH (2009) Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol 26:339–344

    Article  CAS  PubMed  Google Scholar 

  • Van de Braak K, Botterblom MHA, Liu W, Taverne N, Van der Knaap WPW, Rombout JHWM (2002) The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 12:253–272

    Article  PubMed  Google Scholar 

  • Van Doan H, Hoseinifar SH, Tapingkae W, Tongsiri S, Khamtavee P (2016) Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:678–685

    Article  CAS  PubMed  Google Scholar 

  • Van Doan H, Hoseinifar SH, Tapingkae W, Khamtavee P (2017) The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae, and growth performance in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 62:139–146

    Article  CAS  PubMed  Google Scholar 

  • Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Srichaiyo S (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 491:94–100

    Article  Google Scholar 

  • van Hai N, Fotedar R (2010) A review of probiotics in shrimp aquaculture. J Appl Aquac 22:251–266

    Article  Google Scholar 

  • Vargas-Albores F, Yepiz-Plascencia G (2000) Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191:13–21

    Article  CAS  Google Scholar 

  • Venkat HK, Sahu NP, Jain KK (2004) Effect of feeding Lactobacillus-based probiotics on the gut microflora, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man). Aquac Res 35:501–507

    Article  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H, Baxter J, Hecht T (2004) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27:319–326

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-B (2007) Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture 269:259–264

    Article  CAS  Google Scholar 

  • Wang Y, Gu Q (2010) Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Mar Biol Res 6:327–332

    Article  Google Scholar 

  • Wang W, Zhang X (2008) Comparison of antiviral efficiency of immune responses in shrimp. Fish Shellfish Immunol 25:522–527

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl A, Olsson J, Kjelleberg S, Conway P (1991) Isolation and characterization of turbot (Scophthalmus maximus) associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 57:2223–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young Lee S, Söderhäll K (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol 12:421–437

    Article  CAS  Google Scholar 

  • Yousefian M, Amiri M (2009) A review of the use of prebiotic in aquaculture for fish and shrimp. Afr J Biotechnol 8:7313–7318

    CAS  Google Scholar 

  • Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q, Wang X, Liufu Z (2011) Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42:943–952

    Article  CAS  Google Scholar 

  • Zhang J, Liu Y, Tian L, Yang H, Liang G, Xu D (2012) Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 33:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Duan Y, Dong H, Zhang J (2017) Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol 62:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ziaeenezhad S, Sharifpour I (2016) The effects of two synbiotics on biochemical and immunological parameters of white shrimp (Litopenaeus vannamei) hemolymph. Iran Sci Fish J 24:169–178

    Google Scholar 

  • Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett DL, Mirvaghefi A-R, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252:516–524

    Article  CAS  Google Scholar 

  • Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcazar JL (2014) Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 36:68–74

    Article  CAS  PubMed  Google Scholar 

  • Zubaidah A, Yuhana M, Widanarni (2015) Encapsulated synbiotic dietary supplementation at different dosages to prevent Vibriosis in white shrimp, Litopenaeus vannamei. Hayati J Biosci 22:163–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Hoseinifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoseinifar, S.H., Dadar, M., Van Doan, H., Harikrishnan, R. (2019). Feed Additives Impacts on Shellfish Microbiota, Health, and Development. In: Derome, N. (eds) Microbial Communities in Aquaculture Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-16190-3_7

Download citation

Publish with us

Policies and ethics