Skip to main content

Li-Fi Embedded Wireless Integrated Medical Assistance System

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 931))

Abstract

The hybrid Wireless Integrated Medical Assistance System (WIMAS) addressed in this paper relay both on optical wireless communication (Light-Fidelity - Li-Fi, Visible Light Communication - VLC, infrared - IR) and conventional Radio Frequency (RF) wireless communication. The medical system consists of two Wireless Medical Body Area Networks (WMBAN) based on VLC (an insulin wearable kit and ECG test device) and an Emergency Remote Medical Assistance (ERMA) with Li-Fi wireless communication technology embedded. Using RF in medical facilities is subject of strict regulations due to interferences with other RF devices, negative effects on human health and lack of security. On the other hand, both Li-Fi and VLC are suitable to be set as wireless communication technologies in medical environments and by the patients with wearable WMBAN. Research on VLC and IR transdermal communication for implantable medical devices has also been demonstrated as feasible with promising future and the Li-Fi technology recently deployed on the market is mature enough to be integrated in the emergency remote medical assistance system presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Panescu, D.: Emerging technologies [wireless communication systems for implantable medical devices]. IEEE Eng. Med. Biol. Mag. 27(2), 96–101 (2008). https://doi.org/10.1109/emb.2008.915488

    Article  Google Scholar 

  2. Baig, M.M., Gholamhosseini, H.: Smart health monitoring systems: an overview of design and modelling. J. Med. Syst. 37(2), 9898 (2013). https://doi.org/10.1007/s10916-012-9898-z

    Article  Google Scholar 

  3. Uddin, A., Barakah, D.M.: A survey of challenges and applications of Wireless Body Area Network (WBAN) and role of a virtual doctor server in existing architecture. In: Third International Conference on Intelligent Systems, Modelling and Simulation (ISMS) (2012)

    Google Scholar 

  4. IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks; IEEE Std 802.15.6-2012, pp. 1–271. IEEE, Piscataway (2012)

    Google Scholar 

  5. Arefin, T., Hanif, M., Haque, A.K., Fazlul, M.: Wireless body area network: an overview and various applications. J. Comput. Commun. 5(7), 53–64 (2017)

    Article  Google Scholar 

  6. Liu, B., Yan, Z., Chen, C.W.: MAC protocol in wireless body area networks for E-health: challenges and a context-aware design. IEEE Wirel. Commun. 20, 64–72 (2013). https://doi.org/10.1109/MWC.2013.6590052

    Article  Google Scholar 

  7. Waheed, M., Ahmad, R., Waqas, A., Drieberg, M., Mahtab Alam, M.: Towards efficient wireless body area network using two-way relay cooperation. Sensors (Basel) 18(2), 565 (2018)

    Article  Google Scholar 

  8. Sudhir, D., Ramjee, P.: Human Bond Communication: The Holy Grail of Holistic Communication and Immersive Experience. John Wiley and Sons Inc., Hoboken (2017)

    Google Scholar 

  9. https://www.etsi.org/technologies-clusters/technologies/. Accessed 15 Oct 2018

  10. Liu, R., Wang, Y., Shu, M., Wu, S.: Throughput assurance of wireless body area networks coexistence based on stochastic geometry. PLoS ONE 12(1), e0171123 (2017)

    Article  Google Scholar 

  11. Potential health effects of exposure to electromagnetic fields (EMF). SCENIHR adopted this Opinion at the 9th plenary meeting on 27 January 2015. Accessed 11 Oct 2018

    Google Scholar 

  12. International Standards on Absorbed Radiation (SAR), Jabra, White Paper (2018)

    Google Scholar 

  13. Signals, the exposure from cell phone use-power output-has changed. https://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/cell-phones-fact-sheet. Accessed 11 Oct 2018

  14. Cleveland R.F., Ulcek Jr., J.L.: Questions and answers about biological effects and potential hazards of radio frequency electromagnetic fields. In: OET Bulletin 56 Fourth Edition (1999)

    Google Scholar 

  15. Hans, N., Kapadia, F.N.: Effects of mobile phone use on specific intensive care unit devices. Indian J. Crit. Care Med. 12(4), 170–173 (2008). https://doi.org/10.4103/0972-5229.45077

    Article  Google Scholar 

  16. EMI in hospitals – and what can be done to reduce it. http://www.epdtonthenet.net/article/133645. Accessed 08 Oct 2018

  17. http://ec.europa.eu/health/scientific_committees/emerging/docs/. Accessed 11 Oct 2018

  18. https://www.tuv-sud.com/industries/medical-devices-healthcare. Accessed 15 Oct 2018

  19. https://www.pcworld.com/article/255841/wireless_tech_makes_health_care_security_a_major_concern.html. Accessed 11 Oct 2018

  20. Dimitrov, S., Haas, H.: Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  21. Kahn, J.M., Barry, J.R.: Wireless infrared communications. Proc. IEEE 85(2), 265–298 (1997)

    Article  Google Scholar 

  22. Dimitrov, S., Mesleh, R., Haas, H., Cappitelli, M., Olbert, M., Bassow, E.: On the SIR of a cellular infrared optical wireless system for an aircraft. IEEE J. Sel. Areas Commun. (IEEE JSAC) 27(9), 1623–1638 (2009)

    Article  Google Scholar 

  23. Le Bas, C., Sahuguede, S., Julien-Vergonjanne, A., Combeau, P.: Infrared and Visible links for medical body sensor networks. In: IEEE Global LIFI Congress, Paris, France (2018)

    Google Scholar 

  24. Armstrong, J., Lowery, A.: Power efficient optical OFDM. Electron. Lett. 42(6), 370–372 (2006)

    Article  Google Scholar 

  25. Carruthers, J.B., Kahn, J.M.: Multiple-subcarrier modulation for non-directed wireless infrared communication. IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996). https://doi.org/10.1109/49.490239

    Article  Google Scholar 

  26. Lee, S.C.J., Randel, S., Breyer, F., Koonen, A.M.J.: PAM-DMT for intensity - modulated and direct-detection optical communication systems. IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009)

    Article  Google Scholar 

  27. Fernando, N., Hong, Y., Viterbo, E.: Flip-OFDM for optical wireless communications. In: Information Theory Workshop (ITW), pp. 5–9. IEEE, Paraty (2011)

    Google Scholar 

  28. Tsonev, D., Sinanović, S., Haas, H.: Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. In: Proceedings of the Vehicular Technology Conference (VTC Spring), Yokohama. IEEE, Japan (2012)

    Google Scholar 

  29. Tsouri, G.R.: Low-power body sensor network for wireless ECG based on relaying of creeping waves at 2.4 GHz. In: Proceedings of the International Conference on Body Sensor Networks, BSN 2010, pp. 167–173 (2010)

    Google Scholar 

  30. Al-Qahtani, A., Al-hajri, H., Al-kuwari, S., et al.: A non-invasive remote health monitoring system using visible light communication. In: Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech) (2015). https://www.researchgate.net/publication/281814516_A_non-invasive_remote_health_monitoring_system_using_visible_light_communication

  31. Khan, M.I., Mondal, M.R.H.: Effectiveness of LED index modulation and non-DC biased OFDM for optical wireless communication. In: IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, pp. 227–231 (2017)

    Google Scholar 

  32. Riurean, S.M., Leba, M., Ionica, A.: VLC embedded medical system architecture based on medical devices quality’ requirements. In: International Multidisciplinary Symposium “Universitaria SIMPRO 2018” Petrosani, Romania (2018). Quality-Access to Success Journal

    Google Scholar 

  33. Matzeu, G., Florea, L., Diamond, D.: Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuators B Chemical 211, 403–418 (2015)

    Article  Google Scholar 

  34. Youngseok, P., Yunmok, S., Hocheol, S., Dohyun, K., Yongdae, K.: This ain’t your dose: sensor spoofing attack on medical infusion pump. In: The 10th USENIX Workshop on Offensive Technologies, Austin, TX, USA (2016)

    Google Scholar 

  35. Jarvis, J.C., Salmons, S.: A family of neuromuscular stimulators with optical transcutaneous control. J. Med. Eng. Technol. 15(2), 53–57 (1991)

    Article  Google Scholar 

  36. Miller, J.A., Belanger, G., Song, I., Johnson, F.: Transcutaneous optical telemetry system for an implantable electrical ventricular heart assist device. Med. Biol. Eng. Comput. 30(3), 370–372 (1992)

    Article  Google Scholar 

  37. Okamoto, E., Yamamoto, Y., Inoue, Y., Makino, T., Mitamura, Y.: Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption. J. Artif. Organs 8(3), 149–153 (2005)

    Article  Google Scholar 

  38. Ghassemlooy, Z., Alves, L.N., Zvanovec, S., Khalighi, M.A.: Visible Light Communications: Theory and Applications. CRC Press, Boca Raton (2017)

    Google Scholar 

  39. Abita, J.L., Schneider, W.: Transdermal Optical Communications. Johns Hopkins APL Tech. Dig. 25(3), 261–268 (2004)

    Google Scholar 

  40. (2011). https://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb. Accessed 11 Oct 2018

  41. Pure LiFi. https://purelifi.com/. Accessed 11 Oct 2018

  42. https://www.eldoled.com/led-drivers/product-news/visible-light-communication–vlc-/. Accessed 11 Oct 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Riurean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riurean, S., Antipova, T., Rocha, A., Leba, M., Ionica, A. (2019). Li-Fi Embedded Wireless Integrated Medical Assistance System. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-030-16184-2_34

Download citation

Publish with us

Policies and ethics