Skip to main content

Healing Processes in Tendon Tissue

  • Chapter
  • First Online:
  • 569 Accesses

Abstract

To further our understanding of the biological principles at the basis of tendon tissue repair, this chapter offers a concise yet detailed overview of the various phases involved in the healing of tendon tissue subjected to injury or surgery. A complete understanding of these biological principles is required not only if we are to appreciate how tissue lesion may develop, and if we are to recognize the factors which will hinder a full structural and functional recovery, but also if we intend to efficiently channel the natural healing processes of the damaged tendon. As with all soft tissue, the healing processes of tendon tissue can be seen to follow three biological pathways: regeneration, repair, or a combination of both. During regeneration, the structural and fundamental characteristics of the original tissue are faithfully reproduced by the new tissue (Leadbetter 1995a; b). Therefore, in theory, tissue regeneration represents the ideal healing process for injured soft tissue as it does for striated skeletal muscle (Bisciotti 2010). However, as tendons heal, scar tissue, albeit connective tissue with structural and functional properties inferior to those of the original tendon tissue, appears to varying degrees just as it does when skeletal muscle heals (Józsa and Kannus 1997). Compared to striated muscle, tendon tissue presents a lesser ability to self-repair as it is less vascularized and therefore relatively less replenished with nutrients and oxygen. Nonetheless, several authors maintain that the self-healing ability of tendons is underestimated (Holch et al. 1994; Maagaard-Mortensen et al. 1994; Zwipp 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Tryptase is a proteolytic enzyme present in mast cell granules.

  2. 2.

    Myofibroblasts are connective tissue cells with a contractility similar to that of smooth muscle. These cells were first isolated in 1970 and have since been shown to play an important role in the process of wound healing, tissue fibrosis, and pathological fascicular contractures. Their natural cycle sees them evolving from normal fibroblasts to proto-myofibroblasts, subsequently fully differentiating into myofibroblasts, and finally succumbing to the process of apoptosis that is strongly influenced by mechanical tension, cytokines and specific proteins of the extracellular matrix.

  3. 3.

    NO synthase is an ubiquitous tissue enzyme present in the majority of living organisms that participates in NO production by converting arginine into citrulline (an intermediate metabolite of the urea cycle).

  4. 4.

    The protein scleraxis (Locus: Chr. 8 q24.3) is a member of the superfamily of transcription factors with a basic-helix-loop-helix (bHLH). It is expressed both in mature tendons and ligaments of the limbs and torso, but also in their progenitors. The Scx gene is expressed in all connective tissues that tie muscle to bone structures, as well as in their progenitors that are found in primitive mesenchymal tissue.

  5. 5.

    A dimer is a macromolecule formed by the union of two subunits called monomers. Homodimers arise from the association of identical monomers whereas heterodimers arise from the association of different monomers.

  6. 6.

    An E-box is a DNA hexanucleotide consensus sequence that is typically located upstream from a gene in a “promoter region.”

  7. 7.

    In molecular biology and bioinformatics, a “consensus sequence” refers to the most frequent amino acid or nucleotide in a particular position in multiple sequence alignments.

  8. 8.

    Somite: [from the Greek soma, body-ite]. In embryology, each of the segments in to which the dorsal mesoderm/epimer, left and right of the spinal column, is divided. The somites give rise to elements that will form the dermis of the trunk (dermatomes), the muscles (myotomes) and the axial skeleton (sclerotomi).

  9. 9.

    The myogenic regulatory factors are transcription factors characterized by the secondary structural motif “basic helix-loop-helix” (bHLH); a basic domain involved in binding DNA, and a HLH domain which forms quaternary structures, homo- or heterodimer complexes with other proteins also containing HLH domains. The bHLH motif is found in many transcription factors that are ubiquitously expressed in a tissue-specific manner.

  10. 10.

    The MyoD gene encodes a transcription factor involved in the differentiation of muscle and, in particular, induces fibroblasts to differentiate into myoblasts.

References

  • Abrahamsson SO, Lundborg G, Lohmander LS. Tendon healing in vivo. An experimental model. Scand J Plast Reconstr Surg Hand Surg. 1989a;23(3):199–205.

    CAS  PubMed  Google Scholar 

  • Abrahamsson SO, Lundborg G, Lohmander LS. Segmental variation in microstructure, matrix synthesis and cell proliferation in rabbit flexor tendon. Scand J Plast Reconstr Surg Hand Surg. 1989b;23(3):191–8.

    CAS  PubMed  Google Scholar 

  • Ackermann PW, Ahmed M, Kreicbergs A. Early nerve regeneration after Achilles tendon rupture – a prerequisite for healing? A study in the rat. J Orthop Res. 2002;20:849–56.

    Article  PubMed  Google Scholar 

  • Andia I, Sanchez M, Maffulli N. Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther. 2010;10:1415–26.

    Article  PubMed  Google Scholar 

  • Aslan H, Kimelman-Bleich N, Pelled G, Gazit D. Molecular targets for tendon neoformation. J Clin Invest. 2008;118(2):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspenberg P. Stimulation of tendon repair: mechanical loading, GDFs and platelets. A mini review. Int Orthop. 2007;31:783–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aspenberg P, Forslund C. Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand. 1999;70:51–4.

    Article  CAS  PubMed  Google Scholar 

  • Barkhausen T, Van Griensven M, Zeichen J, Bosch U. Modulation of cell function of human tendon fibroblast by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol. 2003;55:153–8.

    Article  PubMed  Google Scholar 

  • Bergljung L. Vascular reactions after tendon suture and tendon transplantation. A stereo-microangiographic study on the calcaneal tendon of the rabbit. Scand J Plast Reconstr Surg Suppl. 1968;4:7–63.

    CAS  PubMed  Google Scholar 

  • Bidder M, Towler DA, Gelberman RH, Boyer MI. Expression of mRNA for vascular endothelial growth factor at the repair site of healing canine flexor tendon. J Orthop Res. 2000;18:247–52.

    Article  CAS  PubMed  Google Scholar 

  • Bisciotti GN. Le lesioni muscolari. Calzetti e Mariucci, editors. Perugia; 2010.

    Google Scholar 

  • Bisciotti GN, Capellu M, Hidalgo J, et al. Comparison of stiffness resulting from different surgical methods of repair of Achilles tendon rupture. Min Ort Traum. 2007;58(2):107–14.

    Google Scholar 

  • Blumenthal NC, Ricci C, Breger L, Zychlinsky A, Solomon H, et al. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Biolectromagnetics. 1997;18:264–72.

    Article  CAS  Google Scholar 

  • Bréchot N, Gomez E, Bignon M, Khallou-Laschet J, Dussiot M, Cazes A, Alanio-Bréchot C, Durand M, Philippe J, Silvestre JS, Van Rooijen N, Corvol P, Nicoletti A, Chazaud B, Germain S. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One. 2008;3(12):e3950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113:235–48.

    Article  CAS  PubMed  Google Scholar 

  • Burssens P, Stayaert A, Forsyth R, et al. Exogenously administered substance P and neutral endopeptidase inhibitors stimulate fibroblast proliferation, angiogenesis, and collagen organization during Achilles tendon healing. Foot Ankle Int. 2005;26:832–9.

    Article  PubMed  Google Scholar 

  • Carlsson O, Schizas N, Li J, Ackermann PW. Substance P injections enhance tissue proliferation and regulate sensory nerve ingrowth in rat tendon repair. Scand J Med Sci Sports. 2011;21(4):562–9.

    Article  CAS  PubMed  Google Scholar 

  • Chang SC. Cartilage-derived morphogenetic proteins. J Biol Chem. 1994;269:28227–34.

    CAS  PubMed  Google Scholar 

  • Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, Lineaweaver WC. Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg. 1997;100:937–44.

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Most D, Thunder R, Mehrara B, Longaker MT, Lineaweaver WC. Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg Am. 1998;23:1052–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Cao Y, Wu YF, Bais AJ, Gao JS. Tang JB Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg Am. 2008;33(10):1834–42.

    Article  PubMed  Google Scholar 

  • Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK. Immunohistochemical characterization of cells in adult human patellar tendon. J Histochem Cytochem. 2004;52:1151–7.

    Article  CAS  PubMed  Google Scholar 

  • Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN. Scleraxis: a basic helixloop- helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995;121:1099–110.

    CAS  PubMed  Google Scholar 

  • Daugas E, Nochy D, Ravagnag L, Loeffer M, et al. Apoptosis-inducing factor (AIF): a ubiquitous mithochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000;476:118–23.

    Article  CAS  PubMed  Google Scholar 

  • Del Buono A, Battery L, Denaro V, Maccauro G, Maffulli N. Tendinopathy and inflammation: some truths. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):45–50.

    Article  PubMed  Google Scholar 

  • Desmouliere A. Factor influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int. 1995;19:471–6.

    Article  CAS  PubMed  Google Scholar 

  • Dines JS, et al. The effect of growth differentiation factor-5-coated sutures on tendon repair in a rat model. J Shoulder Elb Surg. 2007;16:S204–7.

    Article  Google Scholar 

  • Dovi JV, He LK, Di Pietro LA. Accelerated wound closure in neutrophile-depleted mice. J Leukoc Biol. 2003;73(4):448–55.

    Article  CAS  PubMed  Google Scholar 

  • Duffy FJ Jr, Seiler JG, Gelberman RH, Hergrueter CA. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg Am. 1995;20:645–9.

    Article  PubMed  Google Scholar 

  • Enwemeka CS. Inflammation, cellularity, and fibrillogenesis in regenerating tendon: implications for tendon rehabilitation. Phys Ther. 1989;69(10):816–25.

    Article  CAS  PubMed  Google Scholar 

  • Erlacher L, McCartney J, Piek E, Dijke P, Yanagishita M, Oppermann H, Luyten FP. Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res. 1998;13:383–92.

    Article  CAS  PubMed  Google Scholar 

  • Everts V, Van der Zee E, Creemers L, Beertsen W. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J. 1996;28:229–45.

    Article  CAS  PubMed  Google Scholar 

  • Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res. 2002;4(4):252–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabbiani G. The myofibroblast in wound healing and fibro-contractive disease. J Pathol. 2003:500–3.

    Article  CAS  PubMed  Google Scholar 

  • Garret WE, Lohnes J. Cellular and matrix response to mechanical injury at the myotendinous junction. In: Leadbetter WB, Buckwalter JA, Gordon SL, editors. Sport induced inflammation. Park Ridge: AAOS; 1990. p. 215–24.

    Google Scholar 

  • Gelberman RH, Vandeberg JS, Manske PR, Akesn WH. Flexor tendon healing and restoration of the gliding surface. An ultrastructural study in dogs. J Bone Joint Surg Am. 1983;65:70–80.

    Article  CAS  PubMed  Google Scholar 

  • Gelberman RH, Vandeberg JS, Manske PR, Akeson WH. The early stages of flexor tendon healing: a morphologic study of the first fourteen days. J Hand Surg Am. 1985;10(6 Pt 1):776–84.

    Article  CAS  PubMed  Google Scholar 

  • Gelberman RH., An KA., Banes A., Goldberg V. Tendon. In: Woo SL, Buckwalter JA (eds). Injury and repair of the musculoskeletal soft tissue. AAOS. pp. 1–40. Park Ridge, 1988.

    Google Scholar 

  • Godbout C, Bilodeau R, Van Rooijen N, Bouchard P, Frenette J. Transient neutropenia increases macrophage accumulation and cell proliferation but does not improve repair following intratendinous rupture of Achilles tendon. J Orthop Res. 2010;28(8):1084–91.

    CAS  PubMed  Google Scholar 

  • Goldfarb CA, Harwood F, Silva MJ, Gelberman RH, Amiel D, Boyer MI. The effect of variations in applied rehabilitation force on collagen concentration and maturation at the intrasynovial flexor tendon repair site. J Hand Surg Am. 2001;26:841–6.

    Article  CAS  PubMed  Google Scholar 

  • Harada M, et al. Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr Cartil. 2007;15:468–74.

    Article  CAS  Google Scholar 

  • Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79.

    Article  PubMed  Google Scholar 

  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  • Herpin A, Lelong C, Favrel P. Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol. 2004;28:461–85.

    Article  CAS  PubMed  Google Scholar 

  • Hogan MV, Bagayoko N, James R, Starnes T, Katz A, Chhabra AB. Tissue engineering solutions for tendon repair. J Am Acad Orthop Surg. 2011;19:134–42.

    Article  PubMed  Google Scholar 

  • Holch M, Biewener A, Thermann H, Zwipp H. Non-operative treatment of acute Achilles tendon ruptures: a clinical concept and experimental results. Sport Exerc Injury. 1994;1:18–22.

    Google Scholar 

  • Hope M, Saxby TS. Tendon healing. Foot Ankle Clin. 2007;12(4):553–67.

    Article  PubMed  Google Scholar 

  • Hosaka Y, Teraoka H, Yamamoto E, Ueda H, Takehana K. Mechanism of cell death in inflamed superficial digital flexor tendon in horse. J Comp Pathol. 2005;132:51–8.

    Article  CAS  PubMed  Google Scholar 

  • Hotten GC, et al. Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors. 1996;13:65–74.

    Article  CAS  PubMed  Google Scholar 

  • Houglum PA. Soft tissue healing and its impact on rehabilitation. J Sport Rehab. 1992;1:19–39.

    Article  Google Scholar 

  • Ingraham JM, Weber RA, Childs EW. Intrinsic tendon healing requires the recycling of tendon collagen fibril segments. J Hand Surg Eur. 2011;36:154–5.

    Article  CAS  Google Scholar 

  • Ivie TJ, Bray RC, Salo PT. Denervation impairs healing of the rabbit medial collateral ligament. J Orthop Res. 2002;20:990–5.

    Article  CAS  PubMed  Google Scholar 

  • Józsa LG, Kannus P. Healing and regeneration of tendon. In: Human tendons: anatomy, physiology and patology. Champaign, IL: Human Kinetics; 1997. p. 526–54.

    Google Scholar 

  • Józsa LG, Lehto M, Kannus P, Kvist M, Vieno T, et al. Fibronectin and laminin in Achilles tendon. Acta Orthop Scand. 1989;60:469–71.

    Article  PubMed  Google Scholar 

  • Kadesch T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ. 1993;4:49–55.

    CAS  PubMed  Google Scholar 

  • Kakudo N, Wang YB, Miyake S, Kushida S, Kusumoto K. Analysis of osteochondroinduction using growth and differentiation factor-5 in rat muscle. Life Sci. 2007;81:137–43.

    Article  CAS  PubMed  Google Scholar 

  • Katenkamp D, Stiller D, Schulze E. Ultrastructural cytology of regenerating tendon--an experimental study. Exp Pathol (Jena). 1976;12(1):25–37.

    CAS  Google Scholar 

  • Kaufmann SH, Hengartner MO. Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 2001;11:526–34.

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5(3):e9539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacevic D, Rodeo S. Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res. 2008;466:622–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krysko DV, D’Herde K, Vandenabeele P. Clearence of apoptotic and necrotic cells and its immunological consequences. Apoptosis. 2006;11:1709–26.

    Article  PubMed  Google Scholar 

  • Kuroda R, Kurosaka M, Yoshiya S, Mizuno K. Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surg Sports Traumatol Arthrosc. 2000;8:120–6.

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter WB. Anti-inflammatory therapy and sport injury: the role of non steroidal drugs and corticosteroidal injection. Clin Sports Med. 1995a;14:353–410.

    CAS  PubMed  Google Scholar 

  • Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1995b;14:353–410.

    CAS  PubMed  Google Scholar 

  • Léjard V. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem. 2007;282:17665–75.

    Article  PubMed  CAS  Google Scholar 

  • Letho M, Józsa LG, Kvist M, Järvinen M, Bàlint BJ, Rèffy A. Fibronectin in the ruptured human Achilles tendon and its paratenon. An immunoperoxidase study. Ann Chir Gynaecol. 1990;79:72–7.

    Google Scholar 

  • Lindsay WK, Thomson HG. Digital flexor tendons: an experimental study. Part I. The significance of each component of the flexor mechanismhin tendon healing. Br J Plast Surg. 1960;12:289–316.

    Article  CAS  PubMed  Google Scholar 

  • Lui PP, Cheuk YC, Hung LK, Fu CF. Increased apoptosis at the late stage of tendon healing. Wound Repair Regen. 2007;15:702–7.

    Article  PubMed  Google Scholar 

  • Lundborg G. Experimental flexor tendon healing without adhesion formation – a new concept of tendon nutrition and intrinsic healing mechanism. Hand. 1976;8:235–8.

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G, Rank F. Tendon healing: intrinsic mechanism. In: Hunter JM, Schneider LH, Mackin EJ, editors. Tendon surgery in the hand. St. Louis: Mosby; 1987. p. 54–60.

    Google Scholar 

  • Lundborg G, Hansson HA, Rank F, Rydevik B. Superficial repair of severed flexor tendon in synovial environment. An experimental ultrastructural study on cellular mechanism. J Hand Surg [Am]. 1980;5:451–61.

    Article  CAS  Google Scholar 

  • Maagaard-Mortensen NH, Skov O, Egund N. Regeneration of Achilles tendon after necrosis. Acta Orthop Scand. 1994;258(Suppl):65–87.

    Google Scholar 

  • Maeda E, Shelton JC, Bader DL, Lee DA. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. J Appl Physiol. 2009;106:506–12.

    Article  CAS  PubMed  Google Scholar 

  • Majewski M, Ochsner PE, Liu F, Flückiger R. Evans CH. Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med. 2009;37:2117–25.

    Article  PubMed  Google Scholar 

  • Mammoto T, Seerattan RA, Paulson KD, et al. Nerve growth factor improves ligament healing. J Orthop Res. 2008;26:957–64.

    Article  CAS  PubMed  Google Scholar 

  • Manske PE, Gelberman RH, Vandeberg JS, Lesker AP. Intrinsic flexor-tendon repair. A morphologic study in vivo. J Bone Joint Surg Am. 1984;66:385–96.

    Article  CAS  PubMed  Google Scholar 

  • Mass DP, Tuel RJ. Intrinsic healing of the laceration site in human superficialis flexor tendons in vitro. J Hand Surg Am. 1991;16(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  • Matthews P. The pathology of flexor tendon repair. Hand. 1979;11:233–42.

    Article  CAS  PubMed  Google Scholar 

  • Mikic B. Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Ann Biomed Eng. 2004;32:466–76.

    Article  PubMed  Google Scholar 

  • Mirza R, Di Pietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175(6):2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2097–105.

    Article  PubMed  Google Scholar 

  • Murchison N, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007;134:2697–708.

    Article  CAS  PubMed  Google Scholar 

  • Murray DH, Kubiak EN, Jazrawi LM, Araghi A, Kummer F, Loebenberg MI, Zuckerman JD. The effect of cartilage derived morphogenetic protein 2 on initial healing of a rotator cuff defect in a rat model. J Shoulder Elb Surg. 2007;16:251–4.

    Article  Google Scholar 

  • Murre C, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989;58:537–44.

    Article  CAS  PubMed  Google Scholar 

  • Nelson L, Fairclough J, Archer CW. Use of stem cells in the biological repair of articular cartilage. Expert Opin Biol Ther. 2010;10:43–55.

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Gorski JP, An KN, Amadio PC. Biomechanical, histological and biochemical analyses of canine tendon. J Orthop Res. 1987;5:60–8.

    Article  CAS  PubMed  Google Scholar 

  • Oryan A, Moshiri A. A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Neuronal Interact. 2011;11(2):185–9.

    CAS  PubMed  Google Scholar 

  • Peacock EE, Van Winkle W. Surgery and biology of wound repair. Philadelphia: Saunders; 1970. p. 331–424.

    Google Scholar 

  • Poon IK, Hulett MD, Parish CR. Molecular mechanism of late apoptotic/necrotic cell clearance. Cell Death Differ. 2010;28:340–5.

    Google Scholar 

  • Potenza AD. Tendon healing within the flexor digital sheath in the dog: an experimental study. J Bone Joint Surg Am. 1962;44:49–64.

    Article  PubMed  Google Scholar 

  • Rickert M, et al. Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat Achilles tendon. Connect Tissue Res. 2005;46:175–83.

    Article  CAS  PubMed  Google Scholar 

  • Savitskaya YA, Izaguirre A, Sierra L, Perez F, Cruz F, Villalobos E, Almazan A, Ibarra C. Effect of angiogenesis-related cytokines on rotator cuff disease: the search for sensitive biomarkers of early tendon degeneration. Clin Med Insights Arthritis Musculoskelet Disord. 2011;4:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider LH. Flexor tenolysis. In: Hunter JM, Schneider LH, Mackin EJ, editors. Tendon surgery in the hand. St Louis: Mosby; 1987. p. 209–15.

    Google Scholar 

  • Scott A, Khan KM, Herr J, Cook JL, Lian O, Duronio V. High strain mechanical loading rapidly induces tendon apoptosis: an ex vivo rat tibialis anterior model. Br J Sports Med. 2005;39:25.

    Article  Google Scholar 

  • Scott A, Lian Ø, Bahr R, Hart DA, Duronio V, Khan KM. Increased mast cell numbers in human patellar tendinosis: correlation with symptom duration and vascular hyperplasia. Br J Sports Med. 2008a;42(9):753–7.

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Lian Ø, Roberts CR, Cook JL, Handley CJ, Bahr R, Samiric T, Ilic MZ, Parkinson J, Hart DA, Duronio V, Khan KM. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand J Med Sci Sports. 2008b;18(4):427–35.

    Article  CAS  PubMed  Google Scholar 

  • Sendzik J, Shakibaei M, Schafer-Korting M, Stahlmann R. Fluoroquinolones cause changes in extracellular matrix, signaling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology. 2005;212:24–36.

    Article  CAS  PubMed  Google Scholar 

  • Sercarz EE, Maverakis E. Recognition and function in a degenerate immune system. Mol Immunol. 2004;40(14–15):1003–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.

    CAS  PubMed  Google Scholar 

  • Stayaert AE, Burssens PJ, Vercruysse CW, et al. The effects of substance P on the biomechanics properties of ruptured rat Achilles’tendon. Arch Phys Med Rehabil. 2006;87:254–8.

    Article  Google Scholar 

  • Storm E, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122:3969–79.

    CAS  PubMed  Google Scholar 

  • Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF-b superfamily. Nature. 1994;368:639–42.

    Article  CAS  PubMed  Google Scholar 

  • Stutek M, Van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching of human patellar tendon fibroblast: activation of JNK and modulation of apoptosis. Knee Surg Sports Traumatol Artrosc. 2003;11:122–9.

    Article  Google Scholar 

  • Takasugi H, Inoue H, Akahori O. Scanning electron microscopy of repaired tendon and pseudosheat. Hand. 1976;8:228–34.

    Article  CAS  PubMed  Google Scholar 

  • Trippel SB, Wroblewski J, Makower AM, Whelan MC, Schoenfeld D, Doctrow SR. Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor. J Bone Joint Surg Am. 1993;75:177–89.

    Article  CAS  PubMed  Google Scholar 

  • Tsubone T, Moran SL, Amadio PC, Zhao C, An KN. Expression of growth factors in canine flexor tendon after laceration in vivo. Ann Plast Surg. 2004;53(4):393–7.

    Article  PubMed  Google Scholar 

  • Tsuzaki M, Brigman BE, Yamamoto J, Lawrence WT, Simmons JG, Mohapatra NK, Lund PK, Van Wyk J, Hannafin JA, Bhargava MM, Banes AJ. Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res. 2000;18:546–56.

    Article  CAS  PubMed  Google Scholar 

  • Visser LC, Arnoczky SP, Caballero O, Egerbacher M. Platelet-rich fibrin constructs elute higher concentrations of transforming growth factor-β1 and increase tendon cell proliferation over time when compared to blood clots: a comparative in vitro analysis. Vet Surg. 2010;39(7):811–7.

    Article  PubMed  Google Scholar 

  • Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82.

    Article  PubMed  Google Scholar 

  • Wheeldon T. The use of cellophane as a permanent tendon sheath. J Bone Joint Surg. 1939;21:393–405.

    Google Scholar 

  • Williams IF, Heaton A. McCullagh KG Cell morphology and collagen types in equine tendon scar. Res Vet Sci. 1980;28(3):302–10.

    Article  CAS  PubMed  Google Scholar 

  • Wolfman NM, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest. 1997;100:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodall J Jr, Tucci M, Mishra A, Asfour A, Benghuzzi H. Cellular effects of platelet rich plasmainterleukin1 release from prp treated macrophages. Biomed Sci Instrum. 2008;44:489–94.

    PubMed  Google Scholar 

  • Yalamanchi N, Klein MB, Pham HM, Longaker MT, Chang J. Flexor tendon wound healing in vitro: lactate up-regulation of TGF-beta expression and functional activity. Plast Reconstr Surg. 2004;113(2):625–32.

    Article  PubMed  Google Scholar 

  • Yuan J, Murrel GA, Trickett A, Wang MX. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblast. Biochim Biophys Acta. 2003;1641:35–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010;28:639–43.

    Article  PubMed  Google Scholar 

  • Zwipp H. Minibattle: treatment of Achilles tendon rupture. Non operative functional treatment. The second Congress of EFORT, Specialty day of EFFORT. Munich, July 4th 1995. Abstract book pg 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volpi, P., Bisciotti, G.N. (2019). Healing Processes in Tendon Tissue. In: Muscle Injury in the Athlete. Springer, Cham. https://doi.org/10.1007/978-3-030-16158-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16158-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16157-6

  • Online ISBN: 978-3-030-16158-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics