Skip to main content

Multi-task Learning for Target-Dependent Sentiment Classification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11439))

Included in the following conference series:

Abstract

Detecting and aggregating sentiments toward people, organizations, and events expressed in unstructured social media have become critical text mining operations. Early systems detected sentiments over whole passages, whereas more recently, target-specific sentiments have been of greater interest. In this paper, we present MTTDSC, a multi-task target-dependent sentiment classification system that is informed by feature representation learnt for the related auxiliary task of passage-level sentiment classification. The auxiliary task uses a gated recurrent unit (GRU) and pools GRU states, followed by an auxiliary fully-connected layer that outputs passage-level predictions. In the main task, these GRUs contribute auxiliary per-token representations over and above word embeddings. The main task has its own, separate GRUs. The auxiliary and main GRUs send their states to a different fully connected layer, trained for the main task. Extensive experiments using two auxiliary datasets and three benchmark datasets (of which one is new, introduced by us) for the main task demonstrate that MTTDSC outperforms state-of-the-art baselines. Using word-level sensitivity analysis, we present anecdotal evidence that prior systems can make incorrect target-specific predictions because they miss sentiments expressed by words independent of target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MTTDSC code and datasets are available at https://github.com/divamgupta/mttdsc.

  2. 2.

    We elide possible scalar offsets in sigmoids and softmaxes for simplicity throughout the paper.

  3. 3.

    http://sentiwordnet.isti.cnr.it/.

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Intelligent Systems Design and Applications, Pisa, Italy, pp. 283–287 (2009)

    Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, Montreal, Canada, pp. 41–48 (2009)

    Google Scholar 

  3. Choi, E., Hewlett, D., Uszkoreit, J., Polosukhin, I., Lacoste, A., Berant, J.: Coarse-to-fine question answering for long documents. In: ACL, pp. 209–220 (2017)

    Google Scholar 

  4. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  5. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: ACL, Baltimore, Maryland, USA, pp. 49–54 (2014)

    Google Scholar 

  6. Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for opinion mining. In: LREC, pp. 417–422 (2006)

    Google Scholar 

  7. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, vol. 1, no. 2009, p. 12 (2009)

    Google Scholar 

  8. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: ICWSM, pp. 219–222 (2007)

    Google Scholar 

  9. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: ACL, Portland, Oregon, USA, pp. 151–160 (2011)

    Google Scholar 

  10. Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD Conference, pp. 133–142. ACM (2002)

    Google Scholar 

  11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  12. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  13. Maurer, A., Pontil, M., Romera-Paredes, B.: The benefit of multitask representation learning. J. Mach. Learn. Res. 17(81), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC, Valletta, Malta, pp. 1–3 (2010)

    Google Scholar 

  15. Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  16. Peng, H., Thomson, S., Smith, N.A.: Deep multitask learning for semantic dependency parsing. arXiv preprint arXiv:1704.06855 (2017)

  17. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP Conference 2014, pp. 1532–1543 (2014)

    Google Scholar 

  18. Ruder, S., Bingel, J., Augenstein, I., Søgaard, A.: Learning what to share between loosely related tasks. arXiv preprint arXiv:1705.08142 (2017)

  19. Sanders, N.: Twitter sentiment corpus (2011)

    Google Scholar 

  20. Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. arXiv preprint arXiv:1512.01100 (2015)

  21. Teng, Z., Vo, D.-T., Zhang, Y.: Context-sensitive lexicon features for neural sentiment analysis. In: EMNLP, Austin, Texas, USA, pp. 1629–1638 (2016)

    Google Scholar 

  22. Wang, B., Liakata, M., Zubiaga, A., Procter, R.: TDParse: multi-target-specific sentiment recognition on Twitter. In: EACL, pp. 483–493 (2017)

    Google Scholar 

  23. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: EMNLP, Vancouver, BC, Canada, pp. 347–354 (2005)

    Google Scholar 

Download references

Acknowledgement

The project was partially supported by IBM, Early Career Research Award (SERB, India), and the Center for AI, IIIT Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divam Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, D., Singh, K., Chakrabarti, S., Chakraborty, T. (2019). Multi-task Learning for Target-Dependent Sentiment Classification. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16148-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16147-7

  • Online ISBN: 978-3-030-16148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics