Skip to main content

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM and Two-Dimensional CNN

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11440))

Abstract

Classifying different types of arrhythmias based on ECG signal is an important research topic in healthcare. Traditional methods focus on extracting varieties of features from ECG and using them to build a classifier. However, ECG usually presents high inter- and intra-subjects variability both in morphology and timing, hence, it’s difficult for predesigned features to accurately depict the fluctuation patterns of each heartbeat. To this end, we propose a novel arrhythmias classification model by integrating stacked bidirectional long short-term memory network (SB-LSTM) and two-dimensional convolutional neural network (TD-CNN). Particularly, SB-LSTM mines the long-term dependencies contained in ECG from both directions to depict the overall variation trend of ECG, while TD-CNN exploits local characteristics of ECG to characterize the short-term fluctuation patterns of ECG. Moreover, we design a discrete wavelet transform (DWT) based ECG decomposition layer and a Sum Rule based intermediate classification result fusion layer, by which ECG can be analyzed from multiple time-frequency resolutions, and the classification results of our model can be more accurate. Experimental results based on MIT-BIH arrhythmia database shows that our model outperforms 3 baseline methods, achieving 99.5% of accuracy, 99.9% of sensitivity and 98.2% specificity, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acharya, U.R., Oh, S.L., Hagiwara, Y., et al.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  2. Xiong, Q., Proietti, M., Senoo, K., Lip, G.Y.H.: Asymptomatic versus symptomatic atrial fibrillation: a systematic review of age/gender differences and cardiovascular outcomes. Int. J. Cardiol. 191, 172–177 (2015)

    Article  Google Scholar 

  3. Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias. New Engl. J. Med. 345(20), 1473–1482 (2001)

    Article  Google Scholar 

  4. Fuster, V., Ryden, L.E., Cannom, D.S., et al.: 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. J. Am. Coll. Cardiol. 57(11), e269–e367 (2011)

    Article  Google Scholar 

  5. ANSI/AAMI EC57: Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measure Algorithms (2012)

    Google Scholar 

  6. Martis, R.J., Acharya, U.R., Adeli, H.: Current methods in electrocardiogram characterization. Comput. Biol. Med. 48, 133–149 (2014)

    Article  Google Scholar 

  7. Zhou, F.Y., Jin, L.P., Dong, J.: Premature ventricular contraction detection combining deep neural networks and rules inference. Artif. Intell. Med. 79, 42–51 (2017)

    Article  Google Scholar 

  8. Mant, J., Fitzmaurice, D.A., et al.: Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial. BMJ 7616, 335–380 (2007)

    Google Scholar 

  9. Javadi, M., Arani, S.A.A.A., Sajedin, A., Ebrahimpour, R.: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control 8(3), 289–296 (2013)

    Article  Google Scholar 

  10. Chang, P.C., Lin, J.J., Hsieh, J.C., Weng, J.: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl. Soft Comput. 12(10), 3165–3175 (2012)

    Article  Google Scholar 

  11. Kutlu, Y., Kuntalp, D.: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Program Biomed. 105(3), 257–267 (2012)

    Article  Google Scholar 

  12. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Program Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  13. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang Y.: Sentence level topic models for associated topics extraction. World Wide Web. https://doi.org/10.1007/s11280-018-0639-1

  14. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recommendation based on app permissions. World Wide Web 21(1), 89–104 (2018)

    Article  Google Scholar 

  15. Khalaf, A.F., Owis, M.I., Yassine, I.A.: A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42(21), 8361–8368 (2015)

    Article  Google Scholar 

  16. Liu, F., Zhou, X., Wang, Z., Wang, T., Ni, H., Yang, J.: Identifying obstructive sleep apnea by exploiting fine-grained BCG features based on event phase segmentation. In: IEEE BIBE, pp. 293–300 (2016)

    Google Scholar 

  17. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)

    Article  Google Scholar 

  18. Liu, F., Zhou, X., Wang, Z., Ni, H., Wang, T.: OSA-weigher: an automated computational framework for identifying obstructive sleep apnea based on event phase segmentation. J. Ambient Intell. Hum. Comput. (2018). https://doi.org/10.1007/s12652-018-0787-2

  19. Liu, F., Zhou, X., Wang, Z., Wang, T., Zhang, Y.: Identification of hypertension by mining class association rules from multi-dimensional features. In: ICPR 2018, pp. 3114–3119 (2018)

    Google Scholar 

  20. Yeh, Y.C., Chiou, C.W., Lin, H.J.: Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Syst. Appl. 39(1), 1000–1010 (2012)

    Article  Google Scholar 

  21. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  22. Liu, F., Zhou, X., Wang, Z., et al.: A light-weight data preprocessing and integrative scheduling framework for health monitoring. In: IEEE-EMBS BHI, pp. 192–195 (2016)

    Google Scholar 

  23. Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., Vos, M.D.: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. Comput. Cardiol. 44, 1 (2017)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  25. Coşkun, M., Uçar, A., Yıldırım, Ö., et al.: Face recognition based on convolutional neural network. In: IEEE MEES, pp. 376–379 (2017)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476–1481 (2017)

    Article  Google Scholar 

  27. Singh, B.N., Tiwari, A.K.: Optimal selection of wavelet basis function applied to ECG signal denoising. Digit. Signal Process. 16(3), 275–287 (2006)

    Article  Google Scholar 

  28. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  29. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013)

    Article  Google Scholar 

  30. Wang, Z., Zhou, X., Zhao, W., Liu, F., Ni, H., Yu, Z.: Assessing the severity of sleep apnea syndrome based on ballistocardiogram. PLoS ONE 12(4), e0175351 (2017)

    Article  Google Scholar 

  31. Xie, J., Wang, Z., Yu, Z., Guo, B.: Enabling efficient stroke prediction by exploring sleep related features. In: IEEE UIC, pp. 452–461 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 61332013, No. 61672161), the National Key Research and Development Program of China (No. 2016YFB1001400), and the China Scholarship Council (No. 201706290110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Zhou, X., Cao, J., Wang, Z., Wang, H., Zhang, Y. (2019). Arrhythmias Classification by Integrating Stacked Bidirectional LSTM and Two-Dimensional CNN. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11440. Springer, Cham. https://doi.org/10.1007/978-3-030-16145-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16145-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16144-6

  • Online ISBN: 978-3-030-16145-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics