Skip to main content

Knowledge Graph Embedding with Order Information of Triplets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Abstract

Knowledge graphs (KGs) are large scale multi-relational directed graph, which comprise a large amount of triplets. Embedding knowledge graphs into continuous vector space is an essential problem in knowledge extraction. Many existing knowledge graph embedding methods focus on learning rich features from entities and relations with increasingly complex feature engineering. However, they pay little attention on the order information of triplets. As a result, current methods could not capture the inherent directional property of KGs fully. In this paper, we explore knowledge graphs embedding from an ingenious perspective, viewing a triplet as a fixed length sequence. Based on this idea, we propose a novel recurrent knowledge graph embedding method RKGE. It uses an order keeping concatenate operation and a shared sigmoid layer to capture order information and discriminate fine-grained relation-related information. We evaluate our method on knowledge graph completion on benchmark data sets. Extensive experiments show that our approach outperforms state-of-the-art baselines significantly with relatively much lower space complexity. Especially on sparse KGs, RKGE achieves a 86.5% improvement at Hits@1 on FB15K-237. The outstanding results demonstrate that the order information of triplets is highly beneficial for knowledge graph embedding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD, pp. 1247–1250 (2008)

    Google Scholar 

  2. Bordes, A., Usunier, N., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In: Proceedings of NAACL (2018)

    Google Scholar 

  4. Dai, Q.N., Tu, D.N., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of NAACL (2018)

    Google Scholar 

  5. Dettmers, T., Pasquale, M., Pontus, S., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  6. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of SIGKDD, pp. 601–610 (2014)

    Google Scholar 

  7. Garciaduran, A., Bordes, A., Usunier, N.: Composing relationships with translations. In: Proceedings of EMNLP, pp. 286–290 (2015)

    Google Scholar 

  8. Garciaduran, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features. In: Proceedings of UAI (2017)

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  10. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Proceedings of AAAI (2018)

    Google Scholar 

  11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL, pp. 687–696 (2015)

    Google Scholar 

  12. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Proceedings of AAAI, pp. 985–991 (2016)

    Google Scholar 

  13. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Proceedings of EMNLP, pp. 705–714 (2015)

    Google Scholar 

  14. Lin, Y., Liu, Z., Zhu, X., Zhu, X., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  15. Lipton, Z.C.: A critical review of recurrent neural networks for sequence learning. CoRR abs/1506.00019 (2015). http://arxiv.org/abs/1506.00019

  16. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings of ICML (2017)

    Google Scholar 

  17. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  18. Qian, W., Fu, C., Zhu, Y., Cai, D., He, X.: Translating embeddings for knowledge graph completion with relation attention mechanism. In: Proceedings of IJCAI, pp. 4286–4292 (2018)

    Google Scholar 

  19. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of NIPS, pp. 926–934 (2013)

    Google Scholar 

  20. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of EMNLP, pp. 1631–1642 (2013)

    Google Scholar 

  21. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of CVCS (2015)

    Google Scholar 

  22. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of ICML, vol. 48, pp. 2071–2080 (2016)

    Google Scholar 

  23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  24. Xu, H., Yankai, L., Ruobing, X., Zhiyuan, L., Maosong, S.: OpenKE: an open-source framework for knowledge embedding (2017). http://openke.thunlp.org/home

  25. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China, and National Natural Science Foundation of China (No. U163620068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, J., Gao, N., Xiang, J., Tu, C., Ge, J. (2019). Knowledge Graph Embedding with Order Information of Triplets. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics