Skip to main content

An Attentive Spatio-Temporal Neural Model for Successive Point of Interest Recommendation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Included in the following conference series:

Abstract

In a successive Point of Interest (POI) recommendation problem, analyzing user behaviors and contextual check-in information in past POI visits are essential in predicting, thus recommending, where they would likely want to visit next. Although several works, especially the Matrix Factorization and/or Markov chain based methods, are proposed to solve this problem, they have strong independence and conditioning assumptions. In this paper, we propose a deep Long Short Term Memory recurrent neural network model with a memory/attention mechanism, for the successive Point-of-Interest recommendation problem, that captures both the sequential, and temporal/spatial characteristics into its learned representations. Experimental results on two popular Location-Based Social Networks illustrate significant improvements of our method over the state-of-the-art methods. Our method is also robust to overfitting compared with popular methods for the recommendation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahadori, M.T., Yu, Q.R., Liu, Y.: Fast multivariate spatio-temporal analysis via low rank tensor learning. In: Advances in Neural Information Processing Systems, pp. 3491–3499 (2014)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090. ACM (2011)

    Google Scholar 

  4. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: Advances in Neural Information Processing Systems, pp. 577–585 (2015)

    Google Scholar 

  5. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564. ACM (2016)

    Google Scholar 

  6. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking metric embedding for next new poi recommendation. In: IJCAI, pp. 2069–2075 (2015)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Guo, J.: Backpropagation through time. Harbin Institute of Technology, Unpubl. ms (2013)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)

    Article  Google Scholar 

  12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  13. Li, X., Cong, G., Li, X.L., Pham, T.A.N., Krishnaswamy, S.: Rank-GeoFM: a ranking based geographical factorization method for point of interest recommendation. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 433–442. ACM (2015)

    Google Scholar 

  14. Liu, N.N., Zhao, M., Xiang, E., Yang, Q.: Online evolutionary collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 95–102. ACM (2010)

    Google Scholar 

  15. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: A recurrent model with spatial and temporal contexts. In: AAAI, pp. 194–200 (2016)

    Google Scholar 

  16. Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical neighborhood characteristics for location recommendation. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 739–748. ACM (2014)

    Google Scholar 

  17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  18. Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: Mining user mobility features for next place prediction in location-based services. In: IEEE 12th International Conference on Data Mining, pp. 1038–1043 (2012)

    Google Scholar 

  19. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820. ACM (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation grants IIS-1619028, IIS-1707498 and IIS-1838730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoa D. Doan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doan, K.D., Yang, G., Reddy, C.K. (2019). An Attentive Spatio-Temporal Neural Model for Successive Point of Interest Recommendation. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics