Skip to main content

Solution of a Homogeneous Version of Love Type Integral Equation in Different Asymptotic Regimes

  • Chapter
  • First Online:

Abstract

We consider one-dimensional convolution integral equation on an interval of Fredholm second kind whose particular non-homogeneous versions are known as Love, Gaudin and Lieb-Liniger equation. From operator-theoretic point of view, we are facing a problem of spectral decomposition of a compact integral operator that is finding its eigenvalues and eigenfunctions. We provide methods of deducing the eigenvalues and eigenfunctions in two asymptotic regimes depending on the size of the interval. In the case of small interval, the problem is essentially approximated by another one whose solutions are close to prolate spheroidal wave functions (Slepian functions). In the case of large interval, the problem is reduced to an auxiliary integro-differential equation which is treated by Wiener-Hopf type technique. We illustrate the obtained asymptotical results in both cases by comparing them with direct numerical solution of the integral equation by collocation method. It is remarkable that even though solutions are close to trigonometric functions, they are not exactly equal to them. This fact is in contrast with the results of known constructive approaches to homogeneous Fredholm equations of second kind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atkinson, C., Leppington, F. G.: The asymptotic solution of some integral equations. IMA J. App. Math., 31 (3), 169–182 (1983).

    Article  MathSciNet  Google Scholar 

  2. Bertero, M., Grunbaum, F. A.: Commuting differential operators for the finite Laplace transform. Inverse Problems, 1, 181–192 (1985).

    Article  MathSciNet  Google Scholar 

  3. Baratchart, L., Hardin, D. P., Lima, E. A., Saff, E. B., Weiss, B. P.: Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions. Inverse Problems, 29 (1), 29 pp. (2013).

    Article  MathSciNet  Google Scholar 

  4. Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A, 4 (1), 386–394 (1971).

    Article  Google Scholar 

  5. Griffiths, R. B.: Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain. Phys. Rev., 133 (3A), A768–A775 (1964).

    Article  Google Scholar 

  6. Grunbaum, F. A.: Differential operators commuting with convolution integral operators. J. Math. Anal. Appl., 91, 80–93 (1983).

    Article  MathSciNet  Google Scholar 

  7. Hutson, V.: The coaxial disc viscometer. ZAMM, 44, 365–370 (1964).

    Article  Google Scholar 

  8. Hutson, V.: Asymptotic solutions of integral equations with convolution kernels. Proc. Edinburgh Math. Soc., 14, 5–19 (1964).

    Article  MathSciNet  Google Scholar 

  9. Kac, M., Pollard, H.: The distribution of the maximum of partial sums of independent random variables. Canad. J. Math., 2, 375–384 (1950).

    Article  MathSciNet  Google Scholar 

  10. Knessl, C., Keller, J. B.: Asymptotic properties of eigenvalues of integral equations. SIAM J. Appl. Math., 51 (1), 214–232 (1991).

    Article  MathSciNet  Google Scholar 

  11. Leblond, J., Ponomarev, D.: On some extremal problems for analytic functions with constraints on real or imaginary parts. Advances in Complex Analysis and Operator Theory, 219–236 (2017).

    Google Scholar 

  12. Leonard, A., Mullikin, T. W.: Integral equations with difference kernels on finite intervals. Trans. Amer. Math. Soc., 116, 465–473 (1965).

    Article  MathSciNet  Google Scholar 

  13. Lieb, E. H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130 (4), 1605–1616 (1963).

    Article  MathSciNet  Google Scholar 

  14. Love, E. R.: The electrostatic field of two equal circular co-axial conducting disks. Quat. Journ. Mech. & Appl. Math., 2 (4), 428–451 (1949).

    Article  MathSciNet  Google Scholar 

  15. Naylor, A. W., Sell, G. R.: Linear operator theory in engineering and science. Springer (2000).

    Google Scholar 

  16. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. Springer (2013).

    Google Scholar 

  17. Ponomarev, D.: On some inverse problems with partial data. Doctoral thesis, Université Nice - Sophia Antipolis, 167 pp. (2016).

    Google Scholar 

  18. Prolhac, S.: Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation. J. Phys. A: Math. Theor., 50, 10 pp. (2017).

    Article  MathSciNet  Google Scholar 

  19. Slepian, D., Pollack, H. O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty - 1. B. S. T. J., 40, 43–64 (1961).

    MathSciNet  MATH  Google Scholar 

  20. Snow, C.: Spectroradiometric analysis of radio signals. Scientific papers of the Bureau of Standards, 477, 231–261 (1923).

    Article  Google Scholar 

  21. Tracy, C. A., Widom, H.: On the ground state energy of the δ-function Bose gas. J. Phys. A.: Math. Theor., 49, 19 pp. (2016).

    Article  MathSciNet  Google Scholar 

  22. Tracy, C. A., Widom, H.: On the ground state energy of the δ-function Fermi gas. J. Math. Phys., 57, 14 pp. (2016).

    Google Scholar 

  23. Tracy, C. A., Widom, H.: On the ground state energy of the δ-function Fermi gas II: Further asymptotics Geom. Meth. in Phys. XXXV Workshop, 201–212, (2018).

    Google Scholar 

  24. Trigt, C., van: Analytically solvable problems in radiative transfer - 1. Phys. Rev., 181 (1), 97–114 (1969).

    Article  Google Scholar 

  25. Widom, H.: Asymptotic behaviour of the eigenvalues of certain integral equations II. Arch. Rat. Mech. Anal., 17, 215–229 (1964).

    Article  Google Scholar 

  26. Zhang, S., Jin, J.: Computations of special functions. Wiley-Interscience (1996).

    Google Scholar 

Download references

Acknowledgements

D. Ponomarev is grateful to Austrian Science Fund for its current support (FWF project I3538-N32)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ponomarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baratchart, L., Leblond, J., Ponomarev, D. (2019). Solution of a Homogeneous Version of Love Type Integral Equation in Different Asymptotic Regimes. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-16077-7_6

Download citation

Publish with us

Policies and ethics