Skip to main content

q-Calculus Formalism for Non-extensive Particle Filter

  • Chapter
  • First Online:
Integral Methods in Science and Engineering

Abstract

A class of sequential Monte Carlo estimation is frequently called particle filter. This filter belongs to the Bayesian strategy for estimation, where a non-linear and non-Gaussian assumptions can be applied. Here, the Tsallis’ distribution, from the non-extensive thermo-statistics, is used to design the best likelihood operator. Therefore, no previous likelihood operator is assumed. The new filter formulation will be named as non-extensive particle filter (NEx-PF). The distribution estimated by the NEx-PF can compute the standard form of the central limit theorem, as well as the Levy-Gnedenko central limit theorem. The q-calculus formalism is employed to generalize some definitions and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the word distribution will have the same meaning as probability density function (PDF).

References

  1. Campos Velho, H. F., Furtado, H. C. M.: Adaptive particle filter for stable distribution. In: Integral Methods in Science and Engineering, C. Constanda and P. J. Harris (eds.), Birkhäuser, New York, NY (2011), pp. 47–57.

    Chapter  Google Scholar 

  2. Ernst, T. 2003. A Method for q-Calculus. Journal of Nonlinear Mathematical Physics, 10,

    Google Scholar 

  3. Hernández Torres, R., Scarabello, M., Campos Velho, H. F., Chiwiacowsky, L. D., Soterroni, A., Gouvea, E., Ramos, F. M.: A Hybrid Method using q-Gradient to Identify Structural Damage. In: XXXVI Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE), 2015, Rio de Janeiro (RJ), Brazil (2015), pp. 1–14.

    Google Scholar 

  4. Jackson, F. H.: On q-functions and a certain difference operator. Trans. Roy Soc. Edin., 46, 253–281 (1908).

    Article  Google Scholar 

  5. Jackson, F. H.: On q-definite integrals. Quart. J. Pure and Appl. Math., 41, 193–203 (1910).

    MATH  Google Scholar 

  6. Jackson, F. H. 1910b. q-difference equations. American Journal of Mathematics, 32, 307–314 (1910).

    Article  Google Scholar 

  7. Kac, V., Cheung, P.: Quantum Calculus. Springer-Verlag, New York (2002).

    Book  Google Scholar 

  8. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, In Applied Mathematical Sciences 160 – series, Springer-Verlag, (2004).

    Google Scholar 

  9. Nolan, J. P.: Stable Distributions: Models for Heavy Tailed Data, Boston, MA: Birkhäuser (2005).

    Google Scholar 

  10. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter, Boston, Artech House (2004).

    MATH  Google Scholar 

  11. Schön, T. B.: Estimation of Nonlinear Dynamic Systems: Theory and Applications, Dissertations no. 998 – Linköping Studies in Science and Technology (2006).

    Google Scholar 

  12. Soterroni, A. C., Galski, R. L., Ramos, F. M.: The q-gradient vector for unconstrained continuous optimization problems. In Operations Research Proceedings, B. Hu, K. Morasch, S. Pickl and M. Siegle (eds.), Springer, Berlin, Heidelberg (2011), pp. 365–370.

    Google Scholar 

  13. Tsallis, C.: Possible Generalization of Boltzmann-Gibbs Statistics, J. Statistical Phys., 52, 479–487 (1988).

    Article  MathSciNet  Google Scholar 

  14. Tsallis, C.: Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys., 29, 1–35 (1999).

    Article  Google Scholar 

  15. C. Tsallis, S. M. D. Queiros, Nonextensive statistical mechanics and central limit theorems I - Convolution of independent random variables and q-product, in Complexity, Metastability and Non-extensivity (CTNEXT 07) (Editors: S. Abe, H. Herrmann, P. Quarati, A. Rapisarda, and C. Tsallis), American Institute of Physics, 2007.

    Google Scholar 

  16. Umarov, S., Tsallis, C., Steinberg, S.: On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math., 76, 307–328 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroldo F. de Campos Velho .

Editor information

Editors and Affiliations

Appendix: Non-extensive Tsallis’ Thermostatistics

Appendix: Non-extensive Tsallis’ Thermostatistics

A non-extensive form to the entropy can be expressed as [Ts88]:

$$\displaystyle \begin{aligned} S_q(p) \equiv \frac{k}{q-1} \left( 1-\sum_{i=1}^{N_p} p_i^q \right)~. {} \end{aligned} $$
(3.26)

and the q-expectation of an observable is given by

$$\displaystyle \begin{aligned} O_q \equiv \left\langle O \right\rangle_q = \sum_{i=1}^{N_p}p_i^q O_i~. {} \end{aligned} $$
(3.27)

Some properties are derived to the non-extensive entropy S q.

  1. 1.

    If q → 1:

    $$\displaystyle \begin{aligned} S_1=k \sum_{i=1}^{N_p}p_i \ln p_i~, \end{aligned} $$
    (3.28)
    $$\displaystyle \begin{aligned} O_1=\sum_{i=1}^{N_p}p_i O_i~. \end{aligned} $$
    (3.29)
  2. 2.

    The non-extensive entropy has a positive value: S q ≥ 0.

  3. 3.

    Non-extensivity:

    $$\displaystyle \begin{aligned} S_q(A+B)=S_q(A)+S_q(B)+(1-q)S_q(A)S_q(B) \end{aligned} $$
    (3.30)
    $$\displaystyle \begin{aligned} O_q(A+B) = O_q(A)+O_q(B) + (1-q) [ O_q(A)S_q(B)+O_qS_q(A) ]~. \end{aligned} $$
    (3.31)
  4. 4.

    Maximum for the S q under the constraint \(O_q = \sum _i p_i^q \epsilon _i\) (canonical ensemble):

    $$\displaystyle \begin{aligned} p_i=\frac{1}{Z_q}[1-\beta(1-q)\epsilon_i]^{1/(1-q)} \end{aligned} $$
    (3.32)

    where 𝜖 i is the energy for the state-i, O q = U q is the non-extensive form to the internal energy and the normalization factor Z q (partition function), for 1 < q < 3, is given by

    $$\displaystyle \begin{aligned} Z_q=\left[ \frac {\pi} {\beta(1-q)} \right]^{1/2} \frac{\varGamma [(3-q)/2(q-1)]}{\varGamma[1/(q-1)]}~. \end{aligned} $$
    (3.33)

    For q = 1, the normalization is written as

    $$\displaystyle \begin{aligned} p_i=e^{\beta \epsilon_i}/Z_1~. \end{aligned} $$
    (3.34)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araújo, A.S., Furtado, H.C.M., de Campos Velho, H.F. (2019). q-Calculus Formalism for Non-extensive Particle Filter. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-16077-7_3

Download citation

Publish with us

Policies and ethics