Skip to main content

Nutriepigenomic Immunity

  • Chapter
  • First Online:
Nutrition and Immunity

Abstract

Epigenetic mechanisms and regulatory factors organize a flexible machinery by means of which multicellular organisms generate a heritable alteration in gene expression with respect to the fluctuating external environment. Epigenetic modifications by clever manipulation of maternal dietary and care can transpire independent of DNA sequences to shape a baby and future adult rich not only in immunity to physical diseases – particularly from chronic non-communicable (metabolic and cardiovascular diseases, cancers, and aging) diseases point of view – but also to brain and behavioral disorders. Therefore, despite the book’s dictum to discuss the link between nutrition and immune system function from different aspects, the present chapter first goes beyond to reach that the maternal diet does not leave indiscriminate marks on the offspring epigenome but does plan to manipulate it in a careful pattern and then ends with a nudge to nutriepigenomic immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307.

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  3. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  4. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6(6):2165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

    Article  CAS  PubMed  Google Scholar 

  6. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61:5R–10R.

    Article  PubMed  Google Scholar 

  7. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  8. Aguilera O, Fernández AF, Muñoz A, Fraga MF. Epigenetics and environment: a complex relationship. J Appl Physiol. 2010;109(1):243–51.

    Article  CAS  PubMed  Google Scholar 

  9. Fagiolini M, Jensen CL, Champagne FA. Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol. 2009;19(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathias PCF, Elmhiri G, de Oliveira JC, Delayre-Orthez C, Barella LF, Tófolo LP, et al. Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. Eur J Nutr. 2014;53(3):711–22.

    Article  CAS  PubMed  Google Scholar 

  11. Heerwagen MJR, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Phys Regul Integr Comp Phys. 2010;299(3):R711–R22.

    CAS  Google Scholar 

  12. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–8.

    Article  CAS  PubMed  Google Scholar 

  13. Champagne FA, Curley JP. Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev. 2009;33(4):593–600.

    Article  PubMed  Google Scholar 

  14. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68(4):314–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cropley JE, Suter CM, Beckman KB, Martin DIK. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci. 2006;103(46):17308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weaver ICG, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25(47):11045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mathers JC, JA MK, editors. Epigenetics – potential contribution to fetal programming. Early nutrition programming and health outcomes in later life. Dordrecht: Springer Netherlands; 2009.

    Google Scholar 

  18. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.

    Article  CAS  PubMed  Google Scholar 

  20. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8):2393S–400S.

    Article  CAS  PubMed  Google Scholar 

  21. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis. 2006;44(9):401–6.

    Article  CAS  PubMed  Google Scholar 

  23. Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet. 2011;20(9):1687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medici V, Shibata NM, Kharbanda KK, Islam MS, Keen CL, Kim K, et al. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics. 2014;9(2):286–96.

    Article  CAS  PubMed  Google Scholar 

  25. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci. 2007;104(32):13056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114(4):567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanhees K, Coort S, Ruijters EJB, Godschalk RWL, van Schooten FJ, van Doorn-Khosrovani SB. Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J. 2011;25(2):797–807.

    Article  CAS  PubMed  Google Scholar 

  28. Wu Q, Suzuki M. Parental obesity and overweight affect the body-fat accumulation in the offspring: the possible effect of a high-fat diet through epigenetic inheritance. Obes Rev. 2006;7(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology. 2011;152(6):2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoile SP, Irvine NA, Kelsall CJ, Sibbons C, Feunteun A, Collister A, et al. Maternal fat intake in rats alters 20: 4n-6 and 22: 6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem. 2013;24(7):1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology. 2009;150(11):4999–5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masuyama H, Hiramatsu Y. Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology. 2012;153(6):2823–30.

    Article  CAS  PubMed  Google Scholar 

  34. Moody L, Chen H, Pan Y-X. Postnatal diet remodels hepatic DNA methylation in metabolic pathways established by a maternal high-fat diet. Epigenomics. 2017;9(11):1387–402.

    Article  CAS  PubMed  Google Scholar 

  35. Ge Z-J, Liang Q-X, Hou Y, Han Z-M, Schatten H, Sun Q-Y, et al. Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol. 2014;12(1):29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Panchenko PE, Voisin S, Jouin M, Jouneau L, Prézelin A, Lecoutre S, et al. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics. 2016;8(1):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zheng S, Li Q, Zhang Y, Balluff Z, Pan Y-X. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16INK4a gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics. 2012;7(2):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J. 2011;25(2):714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.

    Article  CAS  PubMed  Google Scholar 

  40. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  41. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, et al. Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci. 2011;108(13):5449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97(6):1064–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17(3):227–38.

    Article  PubMed  CAS  Google Scholar 

  45. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARα promoter of the offspring. Br J Nutr. 2008;100(2):278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F 0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F 1 and F 2 generations. Br J Nutr. 2007;97(3):435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia Y, Cong R, Li R, Yang X, Sun Q, Parvizi N, et al. Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J Nutr. 2012;142(9):1659–65.

    Article  CAS  PubMed  Google Scholar 

  48. Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, et al. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ. 2012;19(6):1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Furuse T, Miyake K, Kohda T, Kaneda H, Hirasawa T, Yamada I, et al. Protein-restricted diet during pregnancy after insemination alters behavioral phenotypes of the progeny. Genes Nutr. 2017;12(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle. Epigenetics. 2012;7(3):239–52.

    Article  CAS  PubMed  Google Scholar 

  51. Ivanova E, Chen J-H, Segonds-Pichon A, Ozanne SE, Kelsey G. DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics. 2012;7(10):1200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barua S, Kuizon S, Brown WT, Junaid MA. High gestational folic acid supplementation alters expression of imprinted and candidate autism susceptibility genes in a sex-specific manner in mouse offspring. J Mol Neurosci. 2016;58(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  53. Cai D, Jia Y, Song H, Sui S, Lu J, Jiang Z, et al. Betaine supplementation in maternal diet modulates the epigenetic regulation of hepatic gluconeogenic genes in neonatal piglets. PLoS One. 2014;9(8):e105504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci. 2007;104(49):19351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen G, Broséus J, Hergalant S, Donnart A, Chevalier C, Bolaños-Jiménez F, et al. Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Mol Nutr Food Res. 2015;59(2):293–302.

    Article  CAS  PubMed  Google Scholar 

  56. Feng Y, Zhao L-Z, Hong L, Shan C, Shi W, Cai W. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring’s heart. J Nutr Biochem. 2013;24(7):1373–80.

    Article  CAS  PubMed  Google Scholar 

  57. Anderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, et al. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen. 2012;53(5):334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weinhouse C, Anderson OS, Jones TR, Kim J, Liberman SA, Nahar MS, et al. An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics. 2011;6(9):1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Silva JP, Lambert G, van Booven D, Wahlestedt C. Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring. Genome Med. 2016;8(1):93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xue J, Schoenrock SA, Valdar W, Tarantino LM, Ideraabdullah FY. Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin Epigenetics. 2016;8(1):107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sanchez-Hernandez D, Poon AN, Kubant R, Kim H, Huot PSP, Cho CE, et al. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring. Appl Physiol Nutr Metab. 2015;40(4):424–31.

    Article  CAS  PubMed  Google Scholar 

  62. Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Peñagaricano F, et al. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep. Front Genet. 2013;4:49.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adamu HA, Imam MU, Ooi D-J, Esa NM, Rosli R, Ismail M. In utero exposure to germinated brown rice and its oryzanol-rich extract attenuated high fat diet-induced insulin resistance in F1 generation of rats. BMC Complement Altern Med. 2017;17(1):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Langie SAS, Achterfeldt S, Gorniak JP, Halley-Hogg KJA, Oxley D, van Schooten FJ, et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J. 2013;27(8):3323–34.

    Article  CAS  PubMed  Google Scholar 

  65. Pourié G, Martin N, Bossenmeyer-Pourié C, Akchiche N, Guéant-Rodriguez RM, Geoffroy A, et al. Folate-and vitamin B12–deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α. FASEB J. 2015;29(9):3713–25.

    Article  PubMed  CAS  Google Scholar 

  66. de Moura AC, da Silva IRV, Reinaldo G, Dani C, Elsner VR, Giovenardi M. Global histone H4 acetylation in the olfactory bulb of lactating rats with different patterns of maternal behavior. Cell Mol Neurobiol. 2016;36(7):1209–13.

    Article  PubMed  CAS  Google Scholar 

  67. Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA, et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol. 2012;77(6):808–15.

    Article  CAS  Google Scholar 

  68. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang X, Yan J, West AA, Perry CA, Malysheva OV, Devapatla S, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012;26(8):3563–74.

    Article  CAS  PubMed  Google Scholar 

  70. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 2017;9(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gonzalez-Nahm S, Mendez M, Robinson W, Murphy SK, Hoyo C, Hogan V, et al. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ Epigenet. 2017;3(2):dvx007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Azzi S, Sas TCJ, Koudou Y, Le Bouc Y, Souberbielle J-C, Dargent-Molina P, et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics. 2014;9(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  73. Boeke CE, Baccarelli A, Kleinman KP, Burris HH, Litonjua AA, Rifas-Shiman SL, et al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics. 2012;7(3):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amarasekera M, Prescott SL, Palmer DJ. Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pac J Allergy Immunol. 2013;31(3):175.

    PubMed  Google Scholar 

  75. Palmer AC. Nutritionally mediated programming of the developing immune system. Adv Nutr. 2011;2(5):377–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy. 2010;65(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  77. Prescott S, Saffery R. The role of epigenetic dysregulation in the epidemic of allergic disease. Clin Epigenetics. 2011;2(2):223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marques AH, O’Connor TG, Roth C, Susser E, Bjørke-Monsen A-L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci. 2013;7:120.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition–3. J Nutr. 2015;145(5):1109S–15S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Paparo L, di Costanzo M, di Scala C, Cosenza L, Leone L, Nocerino R, et al. The influence of early life nutrition on epigenetic regulatory mechanisms of the immune system. Nutrients. 2014;6(11):4706–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Li Y, Liu Y, Strickland FM, Richardson B. Age-dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol. 2010;45(4):312–22.

    Article  CAS  PubMed  Google Scholar 

  83. Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008;118(10):3462–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nauta AJ, Ben Amor K, Knol J, Garssen J, Van der Beek EM. Relevance of pre-and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr. 2013;98(2):586S–93S.

    Article  CAS  PubMed  Google Scholar 

  85. Riiser A. The human microbiome, asthma, and allergy. Allergy Asthma Clin Immunol. 2015;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Walker A. Breast milk as the gold standard for protective nutrients. J Pediatr. 2010;156(2):S3–7.

    Article  CAS  PubMed  Google Scholar 

  87. Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J. 2014;13(1):61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lynch SV, Boushey HA. The microbiome and development of allergic disease. Curr Opin Allergy Clin Immunol. 2016;16(2):165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Palmer DJ, Huang R-C, Craig JM, Prescott SL. Nutritional influences on epigenetic programming: asthma, allergy, and obesity. Immunol Allergy Clin. 2014;34(4):825–37.

    Article  Google Scholar 

  90. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond). 2012;122(11):487–511.

    Article  CAS  Google Scholar 

  92. Ghadimi D, Helwig U, Schrezenmeir J, Heller KJ, Vrese M. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol. 2012;92(4):895–911.

    Article  CAS  PubMed  Google Scholar 

  93. Canani RB, Di Costanzo M, Leone L, Bedogni G, Brambilla P, Cianfarani S, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev. 2011;24(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  94. Deo SS, Mistry KJ, Kakade AM, Niphadkar PV. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010;27(2):66–71.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nwaru BI, Hadkhale K, Hamalainen N, Takkinen HM, Ahonen S, Ilonen J, et al. Vitamin D intake during the first 4 years and onset of asthma by age 5: a nested case-control study. Pediatr Allergy Immunol. 2017;28(7):641–8.

    Article  PubMed  Google Scholar 

  96. vel Szic KS, Declerck K, Vidaković M, Berghe WV. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7(1):33.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghazadeh, A., Mahmoudi, M., Rezaei, N. (2019). Nutriepigenomic Immunity. In: Mahmoudi, M., Rezaei, N. (eds) Nutrition and Immunity. Springer, Cham. https://doi.org/10.1007/978-3-030-16073-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16073-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16072-2

  • Online ISBN: 978-3-030-16073-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics