Skip to main content

Gut Microbiome and Immunity

  • Chapter
  • First Online:
Nutrition and Immunity

Abstract

In addition to strengthening the physical mucosal barrier, the gut comprises the largest population of microflora that can boost both innate and adaptive immunity. Gut microbes exhibit immunosuppressive effects through induction of regulatory T cells and production of anti-inflammatory cytokines, especially interleukin-10. However, some microbes, such as segmented filamentous bacteria, are known to promote pro-inflammatory responses. Of note, both immunosuppressive and inflammatory effects can extend beyond the gut, even reaching the brain. Dysbiosis of the gut microbiota accompanies or even precedes the development of immune-mediated disorders. Consequently, several consensus consider gut microbiota as a target for treatment of health problems ranging from asthma, allergies, infections, autoimmune disorders, neuropsychiatric disorders, cardiometabolic disorders, and cancer. Although evidence suggests a critical time frame for normal acquisition of gut microbiota, dietary factors serve as a promising target for manipulating the gut microbiota to boost the immune system at every stage of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411.

    Article  CAS  PubMed  Google Scholar 

  2. Tlaskalová-Hogenová H, Štěpánková R, Hudcovic T, Tučková L, Cukrowska B, Lodinová-Žádnıková R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93(2–3):97–108.

    Article  PubMed  CAS  Google Scholar 

  3. Galdeano CM, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006;13(2):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacDonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307(5717):1920.

    Article  CAS  PubMed  Google Scholar 

  5. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2010;12(1):5.

    Article  CAS  Google Scholar 

  6. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287(5454):860–4.

    Article  CAS  PubMed  Google Scholar 

  8. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  9. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong P, Pamer EG. CD8 T cell responses to infectious pathogens. Annu Rev Immunol. 2003;21(1):29–70.

    Article  CAS  PubMed  Google Scholar 

  11. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bedoya SK, Lam B, Lau K, Larkin J 3rd. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Round JL, Mazmanian SK. Inducible Foxp3+E regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci. 2010;107(27):12204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9(2):194.

    Article  CAS  PubMed  Google Scholar 

  15. Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity. 2010;33(3):313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    Article  CAS  PubMed  Google Scholar 

  18. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci. 2010;107(27):12204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;27(350):1079–84. https://doi.org/10.1126/science.aad1329.

    Article  CAS  Google Scholar 

  20. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci. 2008;105(43):16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31. https://doi.org/10.1126/science.1179721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiechl G, Bauer B, Fuss I, Lang SA, Moser C, Ruemmele P, et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest. 2011;121(5):1692–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  26. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Supplement 1):4615–22.

    Article  CAS  PubMed  Google Scholar 

  29. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci. 2004;101(7):1981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoarau C, Lagaraine C, Martin L, Velge-Roussel F, Lebranchu Y. Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol. 2006;117(3):696–702.

    Article  CAS  PubMed  Google Scholar 

  32. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121(3):580–91.

    Article  CAS  PubMed  Google Scholar 

  33. Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr. 2007;137(3):781S–90S.

    Article  PubMed  Google Scholar 

  34. Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011;6(3):261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghanei N, Siassi F, Zandieh F. Prebiotic supplementation modulates serum immunoglobulin E levels and improves total SCORing atopic dermatitis score in children with atopic dermatitis: a randomized double blind controlled trial. Journal of Nutritional Sciences and Dietetics. 2015;1(2):80–5.

    Google Scholar 

  36. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL# 3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 2005;100(7):1539.

    Article  PubMed  Google Scholar 

  37. Hart A, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, et al. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53(11):1602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jensen GS, Cash HA, Farmer S, Keller D. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro. J Inflamm Res. 2017;10:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–9.

    Article  CAS  PubMed  Google Scholar 

  40. Miyazawa K, Kawase M, Kubota A, Yoda K, Harata G, Hosoda M, et al. Heat-killed Lactobacillus gasseri can enhance immunity in the elderly in a double-blind, placebo-controlled clinical study. Benefic Microbes. 2015;6(4):441–9.

    Article  CAS  Google Scholar 

  41. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465.

    Article  CAS  PubMed  Google Scholar 

  42. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9.

    Article  PubMed  Google Scholar 

  43. Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol. 2002;34(4):245–53.

    Article  CAS  PubMed  Google Scholar 

  44. Sugahara H, Yao R, Odamaki T, Xiao J. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benefic Microbes. 2017;8(3):463–72.

    Article  CAS  Google Scholar 

  45. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol. 2009;44(1):26–46.

    Article  PubMed  Google Scholar 

  46. Saubermann LJ, Beck P, De Jong YP, Pitman RS, Ryan MS, Kim HS, et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology. 2000;119(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  47. Herias M, Hessle C, Telemo E, Midtvedt T, Hanson LÅ, Wold A. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin Exp Immunol. 1999;116(2):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pessi T, Sütas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy. 2000;30(12):1804–8.

    Article  CAS  PubMed  Google Scholar 

  49. Pessi T, Isolauri E, Sütas Y, Kankaanranta H, Moilanen E, Hurme M. Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein. Int Immunopharmacol. 2001;1(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sütas Y, Hurme M, Isolauri E. Down-regulation of anti-CD3 antibody-induced IL-4 production by bovine caseins hydrolysed with Lactobacillus GG-derived enzymes. Scand J Immunol. 1996;43(6):687–9.

    Article  PubMed  Google Scholar 

  51. Kelsall BL, Biron CA, Sharma O, Kaye PM. Dendritic cells at the host-pathogen interface. Nat Immunol. 2002;3(8):699.

    Article  CAS  PubMed  Google Scholar 

  52. Rautava S, Arvilommi H, Isolauri E. Specific probiotics in enhancing maturation of IgA responses in formula-fed infants. Pediatr Res. 2006;60(2):221.

    Article  PubMed  Google Scholar 

  53. Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis. 2002;8(2):71–80.

    Article  PubMed  Google Scholar 

  54. Calcinaro F, Dionisi S, Marinaro M, Candeloro P, Bonato V, Marzotti S, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48(8):1565–75.

    Article  CAS  PubMed  Google Scholar 

  55. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science. 2000;289(5484):1560–3.

    Article  CAS  PubMed  Google Scholar 

  56. Pérez N, Iannicelli JC, Girard-Bosch C, González S, Varea A, Disalvo L, et al. Effect of probiotic supplementation on immunoglobulins, isoagglutinins and antibody response in children of low socio-economic status. Eur J Nutr. 2010;49(3):173–9.

    Article  PubMed  Google Scholar 

  57. Christensen HR, Frøkiær H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002;168(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zaylaa M, Al Kassaa I, Alard J, Peucelle V, Boutillier D, Desramaut J, et al. Probiotics in IBD: combining in vitro and in vivo models for selecting strains with both anti-inflammatory potential as well as a capacity to restore the gut epithelial barrier. J Funct Foods. 2018;47:304–15.

    Article  CAS  Google Scholar 

  59. Zheng B, van Bergenhenegouwen J, Overbeek S, van de Kant HJ, Garssen J, Folkerts G, et al. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses. PLoS One. 2014;9(5):e95441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66(6):1300–12.

    Article  CAS  PubMed  Google Scholar 

  61. Amital H, Gilburd B, Shoenfeld Y. Probiotic supplementation with Lactobacillus casei (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome. Ann N Y Acad Sci. 2007;1110(1):661–9.

    Article  CAS  PubMed  Google Scholar 

  62. Tankou SK, Regev K, Healy BC, Tjon E, Laghi L, Cox LM, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83:1147–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tankou SK, Regev K, Healy BC, Cox LM, Tjon E, Kivisakk P, et al. Investigation of probiotics in multiple sclerosis. Mult Scler J. 2018;24(1):58–63.

    Article  CAS  Google Scholar 

  64. Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242.

    Article  CAS  PubMed  Google Scholar 

  66. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  67. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  CAS  Google Scholar 

  68. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446.

    Article  CAS  PubMed  Google Scholar 

  69. Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 2008;9(1):65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159.

    Article  CAS  PubMed  Google Scholar 

  71. Cani PD, Rodrigo B, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    Article  CAS  PubMed  Google Scholar 

  72. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Werner T, Wagner SJ, Martínez I, Walter J, Chang J-S, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 2011;60(3):325–33.

    Article  CAS  PubMed  Google Scholar 

  74. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–83.

    Article  PubMed  CAS  Google Scholar 

  75. Kirjavainen PV, Arvola T, Salminen SJ, Isolauri E. Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut. 2002;51(1):51–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.

    Article  CAS  PubMed  Google Scholar 

  77. Kamada N, Seo S-U, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321.

    Article  CAS  PubMed  Google Scholar 

  78. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2014;67(1):128–39.

    Article  CAS  Google Scholar 

  79. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  80. Lee SC, San Tang M, Lim YAL, Choy SH, Kurtz ZD, Cox LM, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8(5):e2880.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu AH. Revisiting the hygiene hypothesis for allergy and asthma. J Allergy Clin Immunol. 2015;136(4):860–5.

    Article  PubMed  Google Scholar 

  83. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8(3):292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701.

    Article  CAS  PubMed  Google Scholar 

  85. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Horne R, Foster JA. Metabolic and microbiota measures as peripheral biomarkers in major depressive disorder. Front Psych. 2018;9:513.

    Article  Google Scholar 

  87. Cuomo A, Maina G, Rosso G, Beccarini Crescenzi B, Bolognesi S, Di Muro A, et al. The microbiome: a new target for research and treatment of schizophrenia and its resistant presentations? A Systematic Literature Search and Review. Front Pharmacol. 2018;9:1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maes M, Twisk FNM, Kubera M, Ringel K, Leunis J-C, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012;136(3):909–17.

    Article  CAS  PubMed  Google Scholar 

  89. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(6):1469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320.

    Article  CAS  PubMed  Google Scholar 

  94. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghanei, N., Saghazadeh, A., Rezaei, N. (2019). Gut Microbiome and Immunity. In: Mahmoudi, M., Rezaei, N. (eds) Nutrition and Immunity. Springer, Cham. https://doi.org/10.1007/978-3-030-16073-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16073-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16072-2

  • Online ISBN: 978-3-030-16073-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics