Skip to main content

Comparison Between DMD and Prony Methodologies Applied to Small Signals Angular Stability

  • Conference paper
  • First Online:
Proceedings of the 4th Brazilian Technology Symposium (BTSym'18) (BTSym 2018)

Abstract

The power systems operation is in current evolution as new technologies are added and influence the dynamics of the system. Increased monitoring of the electric variables to be observed as a way to prevent oscillations and unstable transient effects also yields on the analysis of a lot of data. This paper describes two methodologies for assessment of the angular stability of small signals, using data obtained through measurements. A case with noise on measurement, and another without, will be used for evaluations of the methodologies. An acknowledged computational tool will be used to allow the comparative analysis and the results discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saldaña, A.E., Barocio, E., Messina, A.R., Ramos, J.J., Segundo, R.J., Tinajero, G.A.: Monitoring harmonic distortion in microgrids using dynamic mode decomposition. In: 2017 IEEE PES General Meeting, pp. 1–5. Chicago, IL (2017). https://doi.org/10.1109/pesgm.2017.8274696

  2. Barocio, E., Pal, B.C., Thornhill, N.F., Messina, A.R.: A dynamic mode decomposition framework for global power system oscillation analysis. IEEE Trans. Power Syst. 30(6), 2902–2912 (2015). https://doi.org/10.1109/TPWRS.2014.2368078

    Article  Google Scholar 

  3. Hauer, J.F., Trudnowski, D.J., DeSteese, J.G.: A perspective on WAMS analysis tools for tracking of oscillatory dynamics. In: 2007 IEEE PES General Meeting, pp. 1–10. Tampa, FL (2007). https://doi.org/10.1109/pes.2007.386186

  4. Power System Dynamic Performance Committee, Task Force on Identification of Electromechanical Modes: Identification of electromechanical modes in power systems, IEEE/PES, Special Publication TP462 (2012)

    Google Scholar 

  5. Mohapatra, S., Overbye, T.J.: Fast modal identification, monitoring, and visualization for large-scale power systems using dynamic mode decomposition. In: 2016 Power Systems Computation Conference (PSCC), pp. 1–7. Genoa (2016)

    Google Scholar 

  6. Hauer, J.F., Demeure, C.J., Scharf, L.L.: Initial results in prony analysis of power system response signals. IEEE Trans. Power Syst. 5(1), 80–89 (1990). https://doi.org/10.1109/59.49090

    Article  Google Scholar 

  7. Zhou, N., Pierre, J., Trudnowski, D.: A stepwise regression method for estimating dominant electromechanical modes. In: 2012 IEEE PES General Meeting, pp. 1–1. San Diego, CA (2012). https://doi.org/10.1109/pesgm.2012.6344635

  8. Zhou, N., Pierre, J., Trudnowski, D.: Some considerations in using prony analysis to estimate electromechanical modes. In: 2013 IEEE PES General Meeting, pp. 1–5. Vancouver, BC (2013). https://doi.org/10.1109/pesmg.2013.6672888

  9. Khan, F.Z., Nagaraja, R., Khincha, H.P.: Improved fault location computation using prony analysis for short duration fault. In: 2014 Eighteenth National Power Systems Conference (NPSC), pp. 1–5. Guwahati (2014)

    Google Scholar 

  10. Ordonez, C.A., Chamorro, H.R., Quintero, J., Leelaruji, R., Peng, J.C., Nordström L.: Prony-based on-line oscillation detection with real PMU information. In: 2016 IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1–5. Bogota (2016). https://doi.org/10.1109/ccra.2016.7811401

  11. Schmid, P., Sesterhenn, J.: Dynamic mode decomposition of numerical and experimental data. In: Bulletin of the American Physical Society, vol. 53 (2008)

    Google Scholar 

  12. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  13. Dawson, S.T.M., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. In: Experiments in Fluids, vol. 57, no. 3, p. 42 (2016)

    Google Scholar 

  14. Wang, S., Qing, X.: Nuclear norm regularised dynamic mode decomposition. IET Signal Process. 10(6), 626–632 (2016)

    Article  Google Scholar 

  15. Héas, P., Herzet, C.: Optimal low-rank dynamic mode decomposition. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4456–4460. New Orleans, LA (2017). https://doi.org/10.1109/icassp.2017.7952999

  16. Takeishi, N., Kawahara, Y., Yairi, T.: Sparse nonnegative dynamic mode decomposition. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2682–2686. Beijing (2017). https://doi.org/10.1109/icip.2017.8296769

  17. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. In: Physics of Fluids, vol. 26, no. 2, p. 024103 (2014)

    Article  Google Scholar 

  18. Annoni, J., Seiler, P., Jovanović, M.R.: Sparsity-promoting dynamic mode decomposition for systems with inputs. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6506–6511. Las Vegas, NV (2016). https://doi.org/10.1109/cdc.2016.7799270

  19. Martins, N., Lima, L.T.G., Pinto, H.J.C.: Computing dominant poles of power system transfer functions. IEEE Trans. Power Syst. 11(1), 162–170 (1996). https://doi.org/10.1109/59.486093

    Article  Google Scholar 

  20. Athay, T., Podmore, R., Virmani, S.: A practical method for the direct analysis of transient stability. In: IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 2, pp. 573–584 (1979). https://doi.org/10.1109/tpas.1979.319407

    Article  Google Scholar 

  21. Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer Academic Publishers, Boston, MA (1989)

    Book  Google Scholar 

  22. Eletrobras CEPEL. PacDyn 9.8.3 - User’s Manual, CEPEL/DRE - Department of Electrical Networks (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank CEPEL (Electrical Energy Center Research) for helping with the sourcing of an academic version of the PacDyn computer program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulmar Soares Machado Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machado Jr., Z.S., de Vasconcelos Eng, G. (2019). Comparison Between DMD and Prony Methodologies Applied to Small Signals Angular Stability. In: Iano, Y., Arthur, R., Saotome, O., Vieira Estrela, V., Loschi, H. (eds) Proceedings of the 4th Brazilian Technology Symposium (BTSym'18). BTSym 2018. Smart Innovation, Systems and Technologies, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-16053-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16053-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16052-4

  • Online ISBN: 978-3-030-16053-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics