Skip to main content

Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level

  • Conference paper
  • First Online:
Knots, Low-Dimensional Topology and Applications (KNOTS16 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 284))

Included in the following conference series:

Abstract

Although the genetic information is encoded in a one-dimensional array of nucleic acid bases, three-dimensional relationships within DNA play a major role in how this information is accessed and utilized by living organisms. Because of the intertwined nature of the DNA two-braid and its extreme length and compaction in the cell, some of the most important three-dimensional relationships in DNA are topological in nature. Topological linkages within the two-braid and between different DNA segments can be described in simple mathematical terms that account for both the twist and the writhe in the double helix. Topoisomerases are ubiquitous enzymes that regulate the topological state of the genetic material by altering either twist or writhe. To do so, these enzymes transiently open the topological system by breaking one or both strands of the two-braid. This article will review the mathematics of DNA topology, describe the different classes of topoisomerases, and discuss the mechanistic basis for their actions in both biological and mathematical terms. Finally, it will discuss how topoisomerases recognize the topological states of their DNA substrates and products and how some of these enzymes distinguish supercoil handedness during catalysis and DNA cleavage. These latter characteristics make topoisomerases well suited for their individual physiological tasks and impact their roles as targets of important anticancer and antibacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  2. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)

    Article  Google Scholar 

  3. B. Alberts, Molecular Biology of the Cell, 6th edn. (Garland Science, Taylor and Francis Group, New York, NY, 2015)

    Google Scholar 

  4. E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva et al., An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)

    Article  Google Scholar 

  5. R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016)

    Article  Google Scholar 

  6. J.C. Wang, Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002)

    Article  Google Scholar 

  7. O. Espeli, K.J. Marians, Untangling intracellular DNA topology. Mol. Microbiol. 52, 925–931 (2004)

    Article  Google Scholar 

  8. A.D. Bates, A. Maxwell, DNA Topology (Oxford University Press, New York, USA, 2005)

    Google Scholar 

  9. J.E. Deweese, M.A. Osheroff, N. Osheroff, DNA topology and topoisomerases: teaching a “knotty” subject. Biochem. Mol. Biol. Educ. 37, 2–10 (2008)

    Article  Google Scholar 

  10. C. Adams, A brief introduction to knot theory from the physical point of view, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 1–20

    Google Scholar 

  11. D. Buck DNA topology, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 47–80

    Google Scholar 

  12. Z. Liu, R.W. Deibler, H.S. Chan, L. Zechiedrich, The why and how of DNA unlinking. Nucleic Acids Res. 37, 661–671 (2009)

    Article  Google Scholar 

  13. S.H. Chen, N.L. Chan, T.S. Hsieh, New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 82, 139–170 (2013)

    Article  Google Scholar 

  14. Y. Pommier, Y. Sun, S.N. Huang, J.L. Nitiss, Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016)

    Article  Google Scholar 

  15. Y. Seol, K.C. Neuman, The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev. 8, 101–111 (2016)

    Article  Google Scholar 

  16. L. Finzi, W.K. Olson, The emerging role of DNA supercoiling as a dynamic player in genomic structure and function. Biophys. Rev. 8, 1–3 (2016)

    Article  Google Scholar 

  17. F.B. Fuller, The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68, 815–819 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. W.R. Bauer, F.H. Crick, J.H. White, Supercoiled DNA. Sci. Am. 243, 100–113 (1980)

    Google Scholar 

  19. J.H. White, N.R. Cozzarelli, A simple topological method for describing stereoisomers of DNA catenanes and knots. Proc. Natl. Acad. Sci. USA 81, 3322–3326 (1984)

    Article  Google Scholar 

  20. A.V. Vologodskii, N.R. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643 (1994)

    Article  Google Scholar 

  21. M.R. Dennis, J.H. Hannay, Geometry of Calugareanu’s theorem. Proc. Roy. Soc. A 461, 3245–3254 (2005)

    Article  MATH  Google Scholar 

  22. A.C. Ketron, N. Osheroff, DNA topology and topoisomerases, in Molecular Life Sciences: An Encyclopedic Reference, ed. by E. Bell (Springer, New York, New York, NY, 2014), pp. 1–19

    Google Scholar 

  23. D. Shore, R.L. Baldwin, Energetics of DNA twisting. II. Topoisomer analysis. J. Mol. Biol. 170, 983–1007 (1983)

    Article  Google Scholar 

  24. A. Falaschi, G. Abdurashidova, O. Sandoval, S. Radulescu, G. Biamonti, S. Riva, Molecular and structural transactions at human DNA replication origins. Cell Cycle 6, 1705–1712 (2007)

    Article  Google Scholar 

  25. A. Travers, G. Muskhelishvili, A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep. 8, 147–151 (2007)

    Article  Google Scholar 

  26. J.M. Fortune, N. Osheroff, Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol. 64, 221–253 (2000)

    Article  Google Scholar 

  27. A.K. McClendon, N. Osheroff, DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 623, 83–97 (2007)

    Article  Google Scholar 

  28. J.B. Leppard, J.J. Champoux, Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005)

    Article  Google Scholar 

  29. J.J. Champoux, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001)

    Article  Google Scholar 

  30. A.J. Schoeffler, J.M. Berger, Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem. Soc. Trans. 33, 1465–1470 (2005)

    Article  Google Scholar 

  31. C. Levine, H. Hiasa, K.J. Marians, DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400, 29–43 (1998)

    Article  Google Scholar 

  32. Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006)

    Article  Google Scholar 

  33. K.D. Corbett, J.M. Berger, Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004)

    Article  Google Scholar 

  34. P. Forterre, S. Gribaldo, D. Gadelle, M.C. Serre, Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446 (2007)

    Article  Google Scholar 

  35. S.M. Vos, E.M. Tretter, B.H. Schmidt, J.M. Berger, All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011)

    Article  Google Scholar 

  36. T. Viard, C.B. de la Tour, Type IA topoisomerases: a simple puzzle? Biochimie 89, 456–467 (2007)

    Article  Google Scholar 

  37. N.M. Baker, R. Rajan, A. Mondragon, Structural studies of type I topoisomerases. Nucleic Acids Res. 37, 693–701 (2009)

    Article  Google Scholar 

  38. Y.C. Tse-Dinh, Bacterial and archeal type I topoisomerases. Biochim. Biophys. Acta 1400, 19–27 (1998)

    Article  Google Scholar 

  39. G. Stoll, O.P. Pietilainen, B. Linder, J. Suvisaari, C. Brosi, W. Hennah, V. Leppa, M. Torniainen, S. Ripatti, S. Ala-Mello et al., Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci. 16, 1228–1237 (2013)

    Article  Google Scholar 

  40. J.L. Nitiss, Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta 1400, 63–81 (1998)

    Article  Google Scholar 

  41. M.P. Lee, S.D. Brown, A. Chen, T.-S. Hsieh, DNA topoisomerase I is essential in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 90, 6656–6660 (1993)

    Article  Google Scholar 

  42. S.G. Morham, K.D. Kluckman, N. Voulomanos, O. Smithies, Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol. Cell. Biol. 16, 6804–6809 (1996)

    Article  Google Scholar 

  43. C.R. Lopez, S. Yang, R.W. Deibler, S.A. Ray, J.M. Pennington, R.J. Digate, P.J. Hastings, S.M. Rosenberg, E.L. Zechiedrich, A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol. Microbiol. 58, 80–101 (2005)

    Article  Google Scholar 

  44. J.E. Deweese, N. Osheroff, The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 37, 738–749 (2009)

    Article  Google Scholar 

  45. J.L. Nitiss, DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009)

    Article  Google Scholar 

  46. N.G. Bush, K. Evans-Roberts, A. Maxwell, DNA topoisomerases. EcoSal Plus, 6 (2015)

    Google Scholar 

  47. J.M. Berger, Structure of DNA topoisomerases. Biochim. Biophys. Acta 1400, 3–18 (1998)

    Article  Google Scholar 

  48. J.C. Wang, Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–144 (1998)

    Article  Google Scholar 

  49. R. Velez-Cruz, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, eds. by W.J. Lennarz, M.D. Lane (Elsevier, 2004), pp. 806–811

    Google Scholar 

  50. F.H. Drake, J.P. Zimmerman, F.L. McCabe, H.F. Bartus, S.R. Per, D.M. Sullivan, W.E. Ross, M.R. Mattern, R.K. Johnson, S.T. Crooke, Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem. 262, 16739–16747 (1987)

    Google Scholar 

  51. F.H. Drake, G.A. Hofmann, H.F. Bartus, M.R. Mattern, S.T. Crooke, C.K. Mirabelli, Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28, 8154–8160 (1989)

    Article  Google Scholar 

  52. M. Tsai-Pflugfelder, L.F. Liu, A.A. Liu, K.M. Tewey, J. Whang-Peng, T. Knutsen, K. Huebner, C.M. Croce, J.C. Wang, Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc. Natl. Acad. Sci. USA. 85, 7177–7181 (1988)

    Article  Google Scholar 

  53. J.R. Jenkins, P. Ayton, T. Jones, S.L. Davies, D.L. Simmons, A.L. Harris, D. Sheer, I.D. Hickson, Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 20, 5587–5592 (1992)

    Article  Google Scholar 

  54. C.A. Austin, K.L. Marsh, Eukaryotic DNA topoisomerase IIβ. BioEssays 20, 215–226 (1998)

    Article  Google Scholar 

  55. K.B. Tan, T.E. Dorman, K.M. Falls, T.D. Chung, C.K. Mirabelli, S.T. Crooke, J. Mao, Topoisomerase IIα and topoisomerase IIβ genes: characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res. 52, 231–234 (1992)

    Google Scholar 

  56. A.M. Wilstermann, N. Osheroff, Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr. Top. Med. Chem. 3, 1349–1364 (2003)

    Article  Google Scholar 

  57. M. Pendleton, R.H. Lindsey Jr., C.A. Felix, D. Grimwade, N. Osheroff, Topoisomerase II and leukemia. Ann. NY Acad. Sci. 1310, 98–110 (2014)

    Article  Google Scholar 

  58. A.C. Gentry, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, 2nd edn., eds. by W.J. Lennarz, M.D. Lane (Academic Press, Waltham, 2013), pp. 163–168

    Chapter  Google Scholar 

  59. M.M. Heck, W.N. Hittelman, W.C. Earnshaw, Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 85, 1086–1090 (1988)

    Article  Google Scholar 

  60. R.D. Woessner, M.R. Mattern, C.K. Mirabelli, R.K. Johnson, F.H. Drake, Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ. 2, 209–214 (1991)

    Google Scholar 

  61. K. Kimura, M. Saijo, M. Ui, T. Enomoto, Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase. J. Biol. Chem. 269, 1173–1176 (1994)

    Google Scholar 

  62. P. Grue, A. Grasser, M. Sehested, P.B. Jensen, A. Uhse, T. Straub, W. Ness, F. Boege, Essential mitotic functions of DNA topoisomerase IIα are not adopted by topoisomerase IIβ in human H69 cells. J. Biol. Chem. 273, 33660–33666 (1998)

    Article  Google Scholar 

  63. M.O. Christensen, M.K. Larsen, H.U. Barthelmes, R. Hock, C.L. Andersen, E. Kjeldsen, B.R. Knudsen, O. Westergaard, F. Boege, C. Mielke, Dynamics of human DNA topoisomerases IIα and IIβ in living cells. J. Cell Biol. 157, 31–44 (2002)

    Article  Google Scholar 

  64. B.G. Ju, V.V. Lunyak, V. Perissi, I. Garcia-Bassets, D.W. Rose, C.K. Glass, M.G. Rosenfeld, A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006)

    Article  Google Scholar 

  65. I.G. Cowell, Z. Sondka, K. Smith, K.C. Lee, C.M. Manville, M. Sidorczuk-Lesthuruge, H.A. Rance, K. Padget, G.H. Jackson, N. Adachi et al., Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity. Proc. Natl. Acad. Sci. USA 109, 8989–8994 (2012)

    Article  Google Scholar 

  66. C. Sissi, M. Palumbo, In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell. Mol. Life Sci. 67, 2001–2024 (2010)

    Article  Google Scholar 

  67. V.E. Anderson, N. Osheroff, Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 7, 337–353 (2001)

    Article  Google Scholar 

  68. J.W. Alexander, G.B. Briggs, On types of knotted curves. Ann. Math. 28, 562–586 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  69. K. Reidemeister, Elementare begründung der knotentheorie. Abh. Math. Sem. Univ. Hamburg 5, 24–32 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Morrison, N.R. Cozzarelli, Contacts between DNA gyrase and its binding site on DNA: features of symmetry and asymmetry revealed by protection from nucleases. Proc. Natl. Acad. Sci. USA 78, 1416–1420 (1981)

    Article  Google Scholar 

  71. D.A. Koster, A. Crut, S. Shuman, M.A. Bjornsti, N.H. Dekker, Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010)

    Article  Google Scholar 

  72. J. Kato, Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, H. Suzuki, New topoisomerase essential for chromosome segregation in E. coli. Cell 63, 393–404 (1990)

    Article  Google Scholar 

  73. H. Hiasa, K.J. Marians, Topoisomerase IV can support oriC DNA replication in vitro. J. Biol. Chem. 269, 16371–16375 (1994)

    Google Scholar 

  74. E.L. Zechiedrich, A.B. Khodursky, S. Bachellier, R. Schneider, D. Chen, D.M. Lilley, N.R. Cozzarelli, Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000)

    Article  Google Scholar 

  75. N.J. Crisona, T.R. Strick, D. Bensimon, V. Croquette, N.R. Cozzarelli, Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000)

    Article  Google Scholar 

  76. X. Wang, R. Reyes-Lamothe, D.J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev. 22, 2426–2433 (2008)

    Article  Google Scholar 

  77. M.C. Joshi, D. Magnan, T.P. Montminy, M. Lies, N. Stepankiw, D. Bates, Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet. 9, e1003673 (2013)

    Article  Google Scholar 

  78. P. Zawadzki, M. Stracy, K. Ginda, K. Zawadzka, C. Lesterlin, A.N. Kapanidis, D.J. Sherratt, The localization and action of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC complex. MukBEF. Cell Rep. 13, 2587–2596 (2015)

    Article  Google Scholar 

  79. N.P. Higgins, N.R. Cozzarelli, The binding of gyrase to DNA: analysis by retention by nitrocellulose filters. Nucleic Acids Res. 10, 6833–6847 (1982)

    Article  Google Scholar 

  80. K.R. Madden, L. Stewart, J.J. Champoux, Preferential binding of human topoisomerase I to superhelical DNA. EMBO J. 14, 5399–5409 (1995)

    Article  Google Scholar 

  81. N. Osheroff, Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950 (1986)

    Google Scholar 

  82. E.L. Zechiedrich, N. Osheroff, Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562 (1990)

    Article  Google Scholar 

  83. J. Roca, J.M. Berger, J.C. Wang, On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J. Biol. Chem. 268, 14250–14255 (1993)

    Google Scholar 

  84. A. Patel, L. Yakovleva, S. Shuman, A. Mondragon, Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. Structure 18, 725–733 (2010)

    Article  Google Scholar 

  85. K. Kirkegaard, J.C. Wang, Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol. 185, 625–637 (1985)

    Article  Google Scholar 

  86. J.J. Champoux, R. Dulbecco, An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc. Natl. Acad. Sci. USA 69, 143–146 (1972)

    Article  Google Scholar 

  87. R.F. Frohlich, C. Veigaard, F.F. Andersen, A.K. McClendon, A.C. Gentry, A.H. Andersen, N. Osheroff, T. Stevnsner, B.R. Knudsen, Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal. Nucleic Acids Res. 35, 6170–6180 (2007)

    Article  Google Scholar 

  88. L. Sari, I. Andricioaei, Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation. Nucleic Acids Res. 33, 6621–6634 (2005)

    Article  Google Scholar 

  89. G. Charvin, D. Bensimon, V. Croquette, Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825 (2003)

    Article  Google Scholar 

  90. K.C. Neuman, G. Charvin, D. Bensimon, V. Croquette, Mechanisms of chiral discrimination by topoisomerase IV. Proc. Natl. Acad. Sci. USA 106, 6986–6991 (2009)

    Article  Google Scholar 

  91. R.E. Ashley, A. Dittmore, S.A. McPherson, C.L. Turnbough Jr., K.C. Neuman, N. Osheroff, Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res. 45, 9611–9624 (2017)

    Article  Google Scholar 

  92. A.K. McClendon, A.C. Rodriguez, N. Osheroff, Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J. Biol. Chem. 280, 39337–39345 (2005)

    Article  Google Scholar 

  93. Y. Seol, A.C. Gentry, N. Osheroff, K.C. Neuman, Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα. J. Biol. Chem. 288, 13695–13703 (2013)

    Article  Google Scholar 

  94. K.D. Corbett, A.J. Schoeffler, N.D. Thomsen, J.M. Berger, The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561 (2005)

    Article  Google Scholar 

  95. A.K. McClendon, A.C. Gentry, J.S. Dickey, M. Brinch, S. Bendsen, A.H. Andersen, N. Osheroff, Bimodal recognition of DNA geometry by human topoisomerase IIα: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 47, 13169–13178 (2008)

    Article  Google Scholar 

  96. A.K. McClendon, J.S. Dickey, N. Osheroff, Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 45, 11674–11680 (2006)

    Article  Google Scholar 

  97. T.R. Strick, V. Croquette, D. Bensimon, Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000)

    Article  Google Scholar 

  98. R.E. Ashley, T.R. Blower, J.M. Berger, N. Osheroff, Recognition of DNA supercoil geometry by Mycobacterium tuberculosis gyrase. Biochemistry 56, 5440–5448 (2017)

    Article  Google Scholar 

  99. J.L. Nitiss, Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009)

    Article  Google Scholar 

  100. Y. Pommier, DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev. 109, 2894–2902 (2009)

    Article  Google Scholar 

  101. Y. Pommier, E. Leo, H. Zhang, C. Marchand, DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010)

    Article  Google Scholar 

  102. Y. Pommier, C. Marchand, Interfacial inhibitors: targeting macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36 (2012)

    Article  Google Scholar 

  103. K.J. Aldred, R.J. Kerns, N. Osheroff, Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014)

    Article  Google Scholar 

  104. D.C. Hooper, G.A. Jacoby, Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015)

    Article  Google Scholar 

  105. A.K. McClendon, N. Osheroff, The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs. Biochemistry 45, 3040–3050 (2006)

    Article  Google Scholar 

  106. A.C. Gentry, S. Juul, C. Veigaard, B.R. Knudsen, N. Osheroff, The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I. Nucleic Acids Res. 39, 1014–1022 (2011)

    Article  Google Scholar 

  107. R.H. Lindsey Jr., M. Pendleton, R.E. Ashley, S.L. Mercer, J.E. Deweese, N. Osheroff, Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism. Biochemistry 53, 6595–65602 (2014)

    Article  Google Scholar 

  108. E.G. Gibson, T.R. Blower, M. Cacho, B. Bax, J.M. Berger, N. Osheroff, Mechanism of action of Mycobacterium tuberculosis gyrase inhibitors: a novel class of gyrase poisons. ACS Infect. Dis. 4, 1211–1222 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Work in the senior author’s laboratory was supported by National Institutes of Health grants R01 GM033944 and R01 GM126363 and US Veterans Administration Merit Review award I01 Bx002198. R.E.A. was supported by pre-doctoral fellowship DGE-0909667 from the National Science Foundation. We are grateful to Elizabeth G. Gibson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Osheroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashley, R.E., Osheroff, N. (2019). Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_20

Download citation

Publish with us

Policies and ethics