Skip to main content

A Note on \(\mathfrak {gl}_{m|n}\) Link Invariants and the HOMFLY–PT Polynomial

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 284))

Abstract

We present a short and unified representation-theoretical treatment of type A link invariants (that is, the HOMFLY–PT polynomials, the Jones polynomial, the Alexander polynomial and, more generally, the quantum \(\mathfrak {gl}_{m|n}\) invariants) as link invariants with values in the quantized oriented Brauer category.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that to precisely match the definitions, one should replace q by \(q^{-1}\) and \(q^{\beta }\) by \(q^{-\beta }\).

References

  1. A.K. Aiston, H.R. Morton, Idempotents of Hecke algebras of type A. J. Knot Theory Ramif. 7(4), 463–487 (1998). https://doi.org/10.1142/S0218216598000243

    Article  MathSciNet  MATH  Google Scholar 

  2. J.W. Alexander, Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928). https://doi.org/10.2307/1989123

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Chari, A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  4. J. Comes, B. Wilson, Deligne’s category \(\underline{\rm {REP}}(GL_\delta )\) and representations of general linear supergroups. Represent. Theory 16, 568–609 (2012). https://doi.org/10.1090/S1088-4165-2012-00425-3

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Dipper, S. Doty, F. Stoll, The quantized walled Brauer algebra and mixed tensor space. Algebras Represent. Theory 17(2), 675–701 (2014). https://doi.org/10.1007/s10468-013-9414-2

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2), 239–246 (1985). https://doi.org/10.1090/S0273-0979-1985-15361-3

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Geer, B. Patureau-Mirand, V. Turaev, Modified quantum dimensions and re-normalized link invariants. Compos. Math. 145(1), 196–212 (2009). https://doi.org/10.1112/S0010437X08003795

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Gorsky, S. Gukov, M. Stosic, Quadruply-graded colored homology of knots (2013), arXiv:1304.3481

  9. A. Gyoja, A q-analogue of Young symmetrizer. Osaka J. Math. 23(4), 841–852 (1986), http://projecteuclid.org/euclid.ojm/1200779724

  10. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. (N.S.) 12(1), 103–111 (1985). https://doi.org/10.1090/S0273-0979-1985-15304-2

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Kassel, Quantum Groups. Graduate Texts in Mathematics, vol. 155 (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  12. A. Mathas, Iwahori-Hecke Algebra and Schur Algebras of the Symmetric Group. University Lecture Series, vol. 15 (American Mathematical Society, Providence, 1999)

    MATH  Google Scholar 

  13. T. Ohtsuki, Quantum Invariants. Series on Knots and Everything, vol. 29 (World Scientific, Singapore, 2002)

    Google Scholar 

  14. J.H. Przytycki, P. Traczyk, Conway algebras and skein equivalence of links. Proc. Am. Math. Soc. 100(4), 744–748 (1987). https://doi.org/10.2307/2046716

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Queffelec, A. Sartori, Mixed quantum skew Howe duality and link invariants of type A. J. Pure Appl. Algebra. 223(7), 2733–2779 (2019) . https://doi.org/10.1016/j.jpaa.2018.09.014

    Article  MathSciNet  MATH  Google Scholar 

  16. N.Y. Reshetikhin, V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990), http://projecteuclid.org/euclid.cmp/1104180037

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Sartori, The Alexander polynomial as quantum invariant of links. Ark. Mat. 53(1), 177–202 (2015). https://doi.org/10.1007/s11512-014-0196-5

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Tubbenhauer, P. Vaz, P. Wedrich, Super q-howe duality and web categories. Algebr. Geom. Topol. 17(6), 3703–3749 (2017). https://doi.org/10.2140/agt.2017.17.3703

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H.Q. was funded by the ARC DP 140103821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoel Queffelec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Queffelec, H., Sartori, A. (2019). A Note on \(\mathfrak {gl}_{m|n}\) Link Invariants and the HOMFLY–PT Polynomial. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_13

Download citation

Publish with us

Policies and ethics