Skip to main content

Communication–Free Parallel Mesh Multiplication for Large Scale Simulations

  • Conference paper
  • First Online:
High Performance Computing for Computational Science – VECPAR 2018 (VECPAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11333))

Included in the following conference series:

Abstract

Often unstructured grid methods, such as finite elements, are used in high fidelity simulations. In these methods, solution accuracy is associated to the interpolation order and to the grid size. Unstructured parallel mesh refinement is computationally expensive due to subdomains interface communication. In the present work we develop a uniform edge-based parallel tetrahedral mesh refinement scheme completely free of communication, fast, simple to implement and highly scalable. This is achieved by an index generation for subdomain interface grid points based on special pairing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Discussion originally initiated at http://stackoverflow.com/questions/919612/mapping-two-integers-to-one-in-a-unique-and-deterministic-way.

References

  1. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. (TOMS) 38(2), 14 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II-a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bauman, P.T., Stogner, R.H.: GRINS: a multiphysics framework based on the libmesh finite element library. SIAM J. Sci. Comput. 38(5), S78–S100 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bey, J.: Simplicial grid refinement: on Fredenthal’s algorithm and the optimal number of congruence classes. Numer. Math 85, 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  5. Brewer, M., Diachin, L., Knupp, P., Leurent, T., Melander, D.: The mesquite mesh quality improvement toolkit. In: Proceedings of the 12th International Meshing Roundtable, pp. 239–250 (2003)

    Google Scholar 

  6. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 3(33), 1103–1133 (2011)

    Article  MathSciNet  Google Scholar 

  7. Carey, G.F., Generation, C.G.: Adaptation and Solution Strategies. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, Milton Park (1997)

    Google Scholar 

  8. CGNS: Unstructured mesh for yf-17. https://cgns.github.io/CGNSFiles.html. Accessed 22 Aug 2018

  9. Elias, R.N., Camata, J.J., Aveleda, A., Coutinho, A.L.G.A.: Evaluation of message passing communication patterns in finite element solution of coupled problems. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 306–313. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19328-6_29

    Chapter  Google Scholar 

  10. Karypis, G., Kumar, V.M.: Unstructured graph partitioning and sparse matrix ordering system (1998). Technical report. Department of Computer Science, University of Minnesota, Mineapolis, EUA. http://glaros.dtc.umn.edu/gkhome/views/metis

  11. Gaston, D.R., et al.: Physics- based multiscale coupling for full core nuclear reactor simulation. Ann. Nuclear Energy 84, 45–54 (2015). https://doi.org/10.1016/j.anucene.2014.09.060. Special Issue on Multi-Physics Modelling of LWR Static and Transient Behaviour

    Article  Google Scholar 

  12. Houzeaux, G., la Cruz, R., Owen, H., Vazquez, M.: Parallel uniform mesh multiplication applied to a navier-stokes solver. Comput. Fluids 80, 142–151 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kabelikova, P., Ronovsky, A., Vondraka, V.: Parallel Mesh Multiplication for Code\(\_\)Saturne. Partnership for Advanced Computing in Europe, Prace white paper available online at, PRACE. http://www.prace-ri.eu/meshing/

  14. Kennel, M.B.: KDTREE 2: Fortran 95 and C++ software to efficiently search for near neighbors in a multi-dimensional Euclidean space, August 2004. http://arxiv.org/abs/physics/0408067

  15. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22, 237–254 (2006)

    Article  Google Scholar 

  16. Lawder, J.K., King, P.J.H.: Using space-filling curves for multi-dimensional indexing. In: Lings, B., Jeffery, K. (eds.) BNCOD 2000. LNCS, vol. 1832, pp. 20–35. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45033-5_3

    Chapter  Google Scholar 

  17. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the hilbert space-filling curve. SIGMOD Rec. 30, 19–24 (2001)

    Article  Google Scholar 

  18. Liu, A., Joe, B.: Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision. Math. Comput. 65(215), 1183–1200 (1996)

    Article  MathSciNet  Google Scholar 

  19. Logg, A., Mardal, K.A., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. LNCSE, vol. 84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  20. Mesri, Y., Zerguine, W., Digonnet, H., Silva, L., Coupez, T.: Dynamic parallel adaptation for three dimensional unstructured meshes: application to interface tracking. In: Garimella, R.V. (ed.) Proceedings of the 17th International Meshing Roundtable, pp. 195–212. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87921-3_12

    Chapter  Google Scholar 

  21. Miras, T., Camata, J.J., Elias, R.N., Alves, J.L., Rochinha, F.A., Coutinho, A.L.: A staggered procedure for fluid-object interaction with free surfaces, large rotations and driven by adaptive time stepping. J. Braz. Soc. Mech. Sci. Eng. 40(4), 239 (2018)

    Article  Google Scholar 

  22. Ovcharenko, A., et al.: Neighborhood communication paradigm to increase scalability in large-scale dynamic scientific applications. Parallel Comput. 38, 140–156 (2012). https://doi.org/10.1016/j.parco.2011.10.013

    Article  Google Scholar 

  23. Rosenberg, A.L.: Efficient pairing functions - and why you should care. Int. J. Found. Comput. Sci. 14(1), 3–17 (2003)

    Article  MathSciNet  Google Scholar 

  24. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006)

    Article  Google Scholar 

  25. Szudzik, M.: An elegant pairing function. In: NKS 2006 Wolfram Science Conference (2006)

    Google Scholar 

  26. Tarau, P.: On Two Infinite Families of Pairing Bijections. [cs.MS]

    Google Scholar 

  27. Vazquez, M., et al.: Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yilmaz, E., Aliabadi, S.: Surface conformed linear mesh and data subdivision technique for large-scale flow simulation and visualization in variable intensity computational environment. Comput. Fluids 80, 388–402 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by CNPq and FAPERJ. Computer time is provided by the Texas Advanced Computer Center (TACC) at University of Texas at Austin. We acknowledge also the support of the European Commission (HPC4E H2020 project) and the Brazilian Ministry of Science, Technology, Innovation and Communications through Rede Nacional de Pesquisa (RNP) grant agreement no 689772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro L. G. A. Coutinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, R.M., Lima, B.S.J., Camata, J.J., Elias, R.N., Coutinho, A.L.G.A. (2019). Communication–Free Parallel Mesh Multiplication for Large Scale Simulations. In: Senger, H., et al. High Performance Computing for Computational Science – VECPAR 2018. VECPAR 2018. Lecture Notes in Computer Science(), vol 11333. Springer, Cham. https://doi.org/10.1007/978-3-030-15996-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15996-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15995-5

  • Online ISBN: 978-3-030-15996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics