Skip to main content

Digitalization in Restorative Dentistry

  • Chapter
  • First Online:
Digital Restorative Dentistry

Abstract

Digitalization is the first step involving a digital restorative dentistry workflow. Although the digitalization process was initially confined to CAD/CAM (computer-aided design/computer-aided manufacturing) dental procedures, nowadays a much wider range of dental procedures have been revolutionized by their ongoing digitalization. Digitalization consists basically of converting any physical 2D or 3D volume into an electronic information language codified in terms of only two possible digits (0 or 1) normally contained in an informatic file.

The number of digitalized procedures and devices that have been incorporated into restorative dentistry is substantially growing. Digital photograph cameras, spectrophotometers for tooth shade matching, intraoral and extraoral scanners and 2D/3D radiological devices, spectrophotogrammetry, facial scanners, and jaw track motion systems are the main devices used to obtain digital information in restorative dentistry. The aim of this chapter is to describe to the reader the characteristics of every single family of devices as well as their specific nomenclature, features, and the types of file used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams GE. Digital technology. 3rd ed. Chicago: Science Research Associates; 1986.

    Google Scholar 

  2. Tocci R. Digital systems: principles and applications. 10th ed. Upper Saddle River, NJ: Prentice Hall; 2006.

    Google Scholar 

  3. Ceruzzi PE. Computing - a concise history. 1st ed. Cambridge, MA: MIT Press Essential Knowledge Series; 2012.

    Book  Google Scholar 

  4. Ahmad I. Digital dental photography. Part 1: An overview. Br Dent J. 2009;206(8):403–7. https://doi.org/10.1038/sj.bdj.2009.306.

    Article  PubMed  Google Scholar 

  5. Ahmad I. Digital dental photography. Part 3: Principles of digital photography. Br Dent J. 2009;206(10):517–23. https://doi.org/10.1038/sj.bdj.2009.416.

    Article  PubMed  Google Scholar 

  6. Wander P. Dental photography in record keeping and litigation. Br Dent J. 2014;216(4):207–8. https://doi.org/10.1038/sj.bdj.2014.141.

    Article  PubMed  Google Scholar 

  7. Desai V, Bumb D. Digital dental photography: a contemporary revolution. Int J Clin Pediatr Dent. 2013;6(3):193–6. https://doi.org/10.5005/jp-journals-10005-1217.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Terry DA, Snow SR, McLaren EA. Contemporary dental photography: selection and application. Compend Contin Educ Dent. 2008;29(8):432–6, 438, 440–2 passim; quiz 450, 462.

    PubMed  Google Scholar 

  9. Shorey R, Moore K. Clinical digital photography: implementation of clinical photography for everyday practice. J Calif Dent Assoc. 2009;37(3):179–83.

    PubMed  Google Scholar 

  10. Wenzel A. A review of dentists use of digital radiography and caries diagnosis with digital systems. Dentomaxillofac Radiol. 2006;35(5):307–14.

    Article  Google Scholar 

  11. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807. https://doi.org/10.4329/wjr.v6.i10.794.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc. 2005;136(10):1379–87.

    Article  Google Scholar 

  13. Ishikawa-Nagai S, Sato R, Furukawa K, Ishibashi K. Using a computer color-matching system in color reproduction of porcelain restorations. Part 1: Application of CCM to the opaque layer. Int J Prosthodont. 1992;5(6):495–502.

    PubMed  Google Scholar 

  14. Jarad FD, Russell MD, Moss BW. The use of digital imaging for colour matching and communication in restorative dentistry. Br Dent J. 2005;199(1):43–9.

    Article  Google Scholar 

  15. Dagg H, O’Connell B, Claffey N, Byrne D, Gorman C. The influence of some different factors on the accuracy of shade selection. J Oral Rehabil. 2004;31:900–4.

    Article  Google Scholar 

  16. Da Silva JD, Park SE, Weber HP, Ishikawa-Nagai S. Clinical performance of a newly developed spectrophotometric system on tooth color reproduction. J Prosthet Dent. 2008;99:361–8. https://doi.org/10.1016/S0022-3913(08)60083-9.

    Article  PubMed  Google Scholar 

  17. Witkowski S, Yajima ND, Wolkewitz M, Strub JR. Reliability of shade selection using an intraoral spectrophotometer. Clin Oral Investig. 2012;16(3):945–9. https://doi.org/10.1007/s00784-011-0590-3.

    Article  PubMed  Google Scholar 

  18. Odaira C, Itoh S, Ishibashi K. Clinical evaluation of a dental color analysis system: the crystaleye spectrophotometer. J Prosthodont Res. 2011;55:199–205. https://doi.org/10.1016/j.jpor.2010.12.005.

    Article  PubMed  Google Scholar 

  19. Rey KA, deRijk WG. Variations of L*, a*, b*, values among Vitapan Classical Shade Guides. J Prosthodont. 2007;16:352–6.

    Article  Google Scholar 

  20. Hassel AJ, Grossmann AC, Schmitter M. Interexaminer reliability in clinical measurement of L*, C*, h* values of anterior teeth using a spectrophotometer. Int J Prosthodont. 2007;20:79–84.

    PubMed  Google Scholar 

  21. Ishikawa-Nagai S, Yoshida A, Da Silva JD, Miller L. Spectrophotometric analysis of tooth color reproduction on anterior all-ceramic crowns: Part 1: Analysis and interpretation of tooth color. J Esthet Restor Dent. 2010;22(1):42–52. https://doi.org/10.1111/j.1708-8240.2009.00311.x.

    Article  PubMed  Google Scholar 

  22. Chu SJ. Use of a reflectance spectrophotometer in evaluating shade change resulting from tooth-whitening products. J Esthet Restor Dent. 2003;15(Suppl 1):S42–8.

    PubMed  Google Scholar 

  23. Martínez-Rus F, Prieto M, Salido MP, Madrigal C, Özcan M, Pradíes G. A clinical study assessing the influence of anodized titanium and zirconium dioxide abutments and peri-implant soft tissue thickness on the optical outcome of implant-supported lithium disilicate single crowns. Int J Oral Maxillofac Implants. 2017;32(1):156–63. https://doi.org/10.11607/jomi.5258.

    Article  PubMed  Google Scholar 

  24. Kim-Pusteri S, Brewer JD, Davis EL, Wee AG. Reliability and accuracy of four dental shade-matching devices. J Prosthet Dent. 2009;101:193–9. https://doi.org/10.1016/S0022-3913(09)60028-7.

    Article  Google Scholar 

  25. Paul S, Peter A, Pietrobon N, Hämmerle CH. Visual and spectrophotometric shade analysis of human teeth. J Dent Res. 2002;81(8):578–82.

    Article  Google Scholar 

  26. Gotfredsen K, Gram M, Ben Brahem E, Hosseini M, Petkov M, Sitorovic M. Effectiveness of shade measurements using a scanning and computer software system: a pilot study. Int J Oral Dent Health. 2015;1:2. https://doi.org/10.23937/2469-5734/1510008.

    Article  Google Scholar 

  27. Vlaar ST, van der Zel JM. Accuracy of dental digitizers. Int Dent J. 2006;56(5):301–9.

    Article  Google Scholar 

  28. González de Villaumbrosia P, Martínez-Rus F, García-Orejas A, Salido MP, Pradíes G. In vitro comparison of the accuracy (trueness and precision) of six extraoral dental scanners with different scanning technologies. J Prosthet Dent. 2016;116(4):543–50. https://doi.org/10.1016/j.prosdent.2016.01.025.

    Article  PubMed  Google Scholar 

  29. Quass S, Rudolph H, Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J Dent. 2007;35(12):903–8.

    Article  Google Scholar 

  30. Galhano GA, Pellizzer EP, Mazaro JV. Optical impression systems for CAD-CAM restorations. J Craniofac Surg. 2012;23(6):e575–9. https://doi.org/10.1097/SCS.0b013e31826b8043.

    Article  PubMed  Google Scholar 

  31. Kusnoto B, Evans CA. Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofac Orthop. 2002;122(4):342–8.

    Article  Google Scholar 

  32. Mörmann WH, Brandestini M, Lutz F. [The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting]. Quintessenz 1987;38(3):457–470.

    Google Scholar 

  33. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17(4):1201–8. https://doi.org/10.1007/s00784-012-0795-0.

    Article  PubMed  Google Scholar 

  34. Van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7(8):e43312. https://doi.org/10.1371/journal.pone.0043312.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solaberrieta E, Otegi JR, Goicoechea N, Brizuela A, Pradies G. Comparison of a conventional and virtual occlusal record. J Prosthet Dent. 2015;114(1):92–7. https://doi.org/10.1016/j.prosdent.2015.01.009.

    Article  PubMed  Google Scholar 

  36. Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin Implant Dent Relat Res. 2015;17(Suppl 1):e54–64. https://doi.org/10.1111/cid.12124.

    Article  Google Scholar 

  37. Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on active triangulation technology with blue light for implants: effect of clinically relevant parameters. Implant Dent. 2015;24(5):498–504. https://doi.org/10.1097/ID.0000000000000283.

    Article  PubMed  Google Scholar 

  38. Gimenez-Gonzalez B, Hassan B, Özcan M, Pradíes G. An in vitro study of factors influencing the performance of digital intraoral impressions operating on active wavefront sampling technology with multiple implants in the edentulous maxilla. J Prosthodont. 2017;26(8):650–5. https://doi.org/10.1111/jopr.12457.

    Article  PubMed  Google Scholar 

  39. Pradíes G, Zarauz C, Valverde A, Ferreiroa A, Martínez-Rus F. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent. 2015;43(2):201–8. https://doi.org/10.1016/j.jdent.2014.12.007.

    Article  PubMed  Google Scholar 

  40. Zarauz C, Valverde A, Martinez-Rus F, Hassan B, Pradies G. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions. Clin Oral Investig. 2016;20(4):799–806. https://doi.org/10.1007/s00784-015-1590-5.

    Article  PubMed  Google Scholar 

  41. Berrendero S, Salido MP, Valverde A, Ferreiroa A, Pradíes G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig. 2016;20(9):2403–10. https://doi.org/10.1007/s00784-016-1714-6.

    Article  PubMed  Google Scholar 

  42. Giménez B, Pradíes G, Martínez-Rus F, Özcan M. Accuracy of two digital implant impression systems based on confocal microscopy with variations in customized software and clinical parameters. Int J Oral Maxillofac Implants. 2015;30(1):56–64. https://doi.org/10.11607/jomi.3689.

    Article  Google Scholar 

  43. Flügge TV, Att W, Metzger MC, Nelson K. Precision of dental implant digitization using intraoral scanners. Int J Prosthodont. 2016;29(3):277–83. https://doi.org/10.11607/ijp.4417.

    Article  PubMed  Google Scholar 

  44. Müller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence Int. 2016;47(4):343–9. https://doi.org/10.3290/j.qi.a35524.

    Article  PubMed  Google Scholar 

  45. Fukazawa S, Odaira C, Kondo H. Investigation of accuracy and reproducibility of abutment position by intraoral scanners. J Prosthodont Res. 2017;61(4):450–9. https://doi.org/10.1016/j.jpor.2017.01.005.

    Article  PubMed  Google Scholar 

  46. Steinbrenner H. The new Cerec AC Bluecam recording unit: a case report. Int J Comput Dent. 2009;12(1):71–7.

    PubMed  Google Scholar 

  47. Kim JH, Kim KB, Kim SH, Kim WC, Kim HY, Kim JH. Quantitative evaluation of common errors in digital impression obtained by using an LED blue light in-office CAD/CAM system. Quintessence Int. 2015;46(5):401–7. https://doi.org/10.3290/j.qi.a33685.

    Article  PubMed  Google Scholar 

  48. Wong KY, Esguerra RJ, Chia VAP, Tan YH, Tan KBC. Three-dimensional accuracy of digital static interocclusal registration by three intraoral scanner systems. J Prosthodont. 2018;27(2):120–8. https://doi.org/10.1111/jopr.12714.

    Article  PubMed  Google Scholar 

  49. Deferm JT, Schreurs R, Baan F, Bruggink R, Merkx MAW, Xi T, Bergé SJ, Maal TJJ. Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning. Clin Oral Investig. 2018;22(3):1303–9. https://doi.org/10.1007/s00784-017-2198-8.

    Article  PubMed  Google Scholar 

  50. Prudente MS, Davi LR, Nabbout KO, Prado CJ, Pereira LM, Zancopé K, Neves FD. Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit. J Prosthet Dent. 2018;119(3):377–83. https://doi.org/10.1016/j.prosdent.2017.03.024.

    Article  PubMed  Google Scholar 

  51. Lie A, Jemt T. Photogrammetric measurements of implant positions. Description of a technique to determine the fit between implants and superstructures. Clin Oral Implants Res. 1994;5(1):30–6.

    Article  Google Scholar 

  52. Jemt T, Lie A. Accuracy of implant-supported prostheses in the edentulous jaw: analysis of precision of fit between cast gold-alloy frameworks and master casts by means of a three-dimensional photogrammetric technique. Clin Oral Implants Res. 1995;6(3):172–80.

    Article  Google Scholar 

  53. Jemt T, Bäck T, Petersson A. Photogrammetry an alternative to conventional impressions in implant dentistry? A clinical pilot study. Int J Prosthodont. 1999;12(4):363–8.

    PubMed  Google Scholar 

  54. Ortorp A, Jemt T, Bäck T. Photogrammetry and conventional impressions for recording implant positions: a comparative laboratory study. Clin Implant Dent Relat Res. 2005;7(1):43–50.

    Article  Google Scholar 

  55. Pradíes G, Ferreiroa A, Özcan M, Giménez B, Martínez-Rus F. Using stereophotogrammetric technology for obtaining intraoral digital impressions of implants. J Am Dent Assoc. 2014;145(4):338–44. https://doi.org/10.14219/jada.2013.45.

    Article  PubMed  Google Scholar 

  56. Agustín-Panadero R, Peñarrocha-Oltra D, Gomar-Vercher S, Peñarrocha-Diago M. Stereophotogrammetry for recording the position of multiple implants: technical description. Int J Prosthodont. 2015;28(6):631–6. https://doi.org/10.11607/ijp.4146.

    Article  PubMed  Google Scholar 

  57. Sánchez-Monescillo A, Sánchez-Turrión A, Vellon-Domarco E, Salinas-Goodier C, Prados-Frutos JC. Photogrammetry impression technique: a case history report. Int J Prosthodont. 2016;29(1):71–3. https://doi.org/10.11607/ijp.4287.

    Article  PubMed  Google Scholar 

  58. Peñarrocha-Oltra D, Agustín-Panadero R, Pradíes G, Gomar-Vercher S, Peñarrocha-Diago M. Maxillary full-arch immediately loaded implant-supported fixed prosthesis designed and produced by photogrammetry and digital printing: a clinical report. J Prosthodont. 2017;26(1):75–81. https://doi.org/10.1111/jopr.12364.

    Article  PubMed  Google Scholar 

  59. Gómez-Polo M, Gómez-Polo C, Del Río J, Ortega R. Stereophotogrammetric impression making for polyoxymethylene, milled immediate partial fixed dental prostheses. J Prosthet Dent. 2018;119(4):506–10. https://doi.org/10.1016/j.prosdent.2017.04.029.

    Article  PubMed  Google Scholar 

  60. Peñarrocha-Diago M, Balaguer-Martí JC, Peñarrocha-Oltra D, Balaguer-Martínez JF, Peñarrocha-Diago M, Agustín-Panadero R. A combined digital and stereophotogrammetric technique for rehabilitation with immediate loading of complete-arch, implant-supported prostheses: a randomized controlled pilot clinical trial. J Prosthet Dent. 2017;118(5):596–603. https://doi.org/10.1016/j.prosdent.2016.12.015.

    Article  PubMed  Google Scholar 

  61. Lauren M, McIntyre F. 4D Clinical imaging for dynamic CAD. Int J Dent. 2013; https://doi.org/10.1155/2013/690265. Epub 2013 Sep 4.

    Article  Google Scholar 

  62. Lauren M. A new 4-dimensional imaging system for jaw tracking. Int J Comput Dent. 2014;17(1):75–82.

    PubMed  Google Scholar 

  63. Aslanidou K, Kau CH, Vlachos C, Saleh TA. The fabrication of a customized occlusal splint based on the merging of dynamic jaw tracking records, cone beam computed tomography, and CAD-CAM digital impression. J Orthod Sci. 2017;6(3):104–9. https://doi.org/10.4103/jos.JOS_61_16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jokstad A. Computer-assisted technologies used in oral rehabilitation and the clinical documentation of alleged advantages - a systematic review. J Oral Rehabil. 2017;44(4):261–90. https://doi.org/10.1111/joor.12483.

    Article  Google Scholar 

  65. Hanssen N, Ruge S, Kordass B. SICAT function: anatomical real-dynamic articulation by merging cone beam computed tomography and jaw motion tracking data. Int J Comput Dent. 2014;17(1):65–74.

    PubMed  Google Scholar 

  66. Rangel FA, Maal TJ, Bergé SJ, van Vlijmen OJ, Plooij JM, Schutyser F, Kuijpers-Jagtman AM. Integration of digital dental casts in 3-dimensional facial photographs. Am J Orthod Dentofac Orthop. 2008;134(6):820–6. https://doi.org/10.1016/j.ajodo.2007.11.026.

    Article  Google Scholar 

  67. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: Part I. J Orthod. 2004;31(1):62–70.

    Article  Google Scholar 

  68. Deli R, Galantucci L, Laino A, D’Alessio R, Di Gioia E, et al. Three-dimensional methodology for photogrammetric acquisition of the soft tissues of the face: a new clinical-instrumental protocol. Prog Orthod. 2013;14:32. https://doi.org/10.1186/2196-1042.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tuncay OC. Three-dimensional imaging and motion animation. Semin Orthod. 2001;7:244–50.

    Article  Google Scholar 

  70. Horner K, O’Malley L, Taylor K, Glenny AM. Guidelines for clinical use of CBCT: a review. Dentomaxillofac Radiol. 2015;44(1):20140225. https://doi.org/10.1259/dmfr.20140225.

    Article  PubMed  Google Scholar 

  71. Mallya SM. Evidence and professional guidelines for appropriate use of cone beam computed tomography. J Calif Dent Assoc. 2015;43(9):512–20.

    PubMed  Google Scholar 

  72. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. https://doi.org/10.11607/jomi.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Pradíes Ramiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramiro, G.P. et al. (2019). Digitalization in Restorative Dentistry. In: Tamimi, F., Hirayama, H. (eds) Digital Restorative Dentistry . Springer, Cham. https://doi.org/10.1007/978-3-030-15974-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15974-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15973-3

  • Online ISBN: 978-3-030-15974-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics