Skip to main content

Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Considering the devastating effects of neurodegenerative disorders and the increasing number of people affected by them, an early diagnosis even presymptomatic, prior to serious mental deterioration is necessary. Therefore, screening for biomarkers, especially glycolipids, in the biological matrices, either tissues or body fluids has proven to be of a great help in establishing an early diagnosis of the disease.

The present chapter, divided into three parts, highlights the implementation and modern applications of the most avant-garde mass spectrometry (MS) techniques characterized by speed, sensitivity and data accuracy for de novo identification and monitoring of glycolipids with potential biomarker role. The first section reviews the etiology, epidemiology, clinical picture, as well as the current diagnostic methods for four of the most frequent neurodegenerative disorders: Parkinson’s disease, Alzheimer’s disease, Lewy body dementia and fronto-temporal dementia. The second section is dedicated to the role of glycolipids as biomarkers of these severe conditions. In the last part of the chapter, the state of the art in terms of mass spectrometry techniques for the detection of extremely valuable glycolipid biomarkers is described in detail. The proficiency of the MS, to be considered as and further developed into a routine method for early detection of neurodegenerative disorders, is also emphasized in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, V. M.-Y., Giasson, B. I., & Trojanowski, J. Q. (2004). More than just two peas in a pod: Common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends in Neurosciences, 27, 129–134.

    Article  CAS  PubMed  Google Scholar 

  2. Giasson, B. I., Forman, M. S., Higuchi, M., Golbe, L. I., Graves, C. L., Kotzbauer, P. T., et al. (2003). Initiation and synergistic fibrillization of tau and alpha-synuclein. Science, 300, 636–640.

    Article  CAS  PubMed  Google Scholar 

  3. Grimm, M. O., Grimm, H. S., Pätzold, A. J., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nature Cell Biology, 7(11), 1118–1124.

    Article  CAS  PubMed  Google Scholar 

  4. Kanekiyo, T., Xu, H., & Bu, G. (2014). ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron, 81(4), 740–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huynh, T. P., Davis, A. A., Ulrich, J. D., & Holtzman, D. M. (2017). Apolipoprotein E and Alzheimer disease: The influence of apoE on amyloid-β and other amyloidogenic proteins. Journal of Lipid Research, 58, 824–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luan, K., Rosales, J. L., & Lee, K. Y. (2013). Crosstalks between neurofibrillary tangles and amyloid plaque formation. Ageing Research Reviews, 12(1), 174–181.

    Article  PubMed  Google Scholar 

  7. National institute for Health and Care Excellence. Dementia—Assessment, management and support for people living with dementia and their carers/NICE guideline NG97. (2018).

    Google Scholar 

  8. Douglas, S., James, I., & Ballard, C. (2004). Non-pharmacological interventions in dementia. Advances in Psychiatric Treatment, 10(3), 171–177.

    Article  Google Scholar 

  9. Toledo, J. B., Zetterberg, H., Van Harten, A. C., et al. (2015). Alzheimer’s disease cerebrospinal fluid biomarker in cognitively normal subjects. Brain, 138(9), 2701–2715.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Wilde, A., van der Flier, W. M., Pelkmans, W., et al. (2018). Association of amyloid positron emission tomography with changes in diagnosis and patient treatment in an unselected memory clinic cohort: The ABIDE project. JAMA Neurology, 75(9), 1062–1070.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saint-Aubert, L., Lemoine, L., Chiotis, K., et al. (2017). Tau PET imaging: Present and future directions. Molecular Neurodegeneration, 12, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sharma, N., & Singh, A. N. (2016). Exploring biomarkers for Alzheimer’s disease. Advances in Psychiatric Treatment, 10(7), KE01–KE06.

    CAS  Google Scholar 

  13. Jack, C. R., Bennett, D. A., Blennow, K., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement, 14(4), 535–562.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neumann, M., Rademakers, R., Roeber, S., et al. (2009). A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain, 132(11), 2922–2931.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hughes, T. A., Ross, H. F., Musa, S., et al. (2000). A 10-year study of the incidence of and factors predicting dementia in Parkinson’s disease. Neurology, 54(8), 1596–1603.

    Article  CAS  PubMed  Google Scholar 

  16. Galpern, W. R., & Lang, A. E. (2006). Interface between tauopathies and synucleinopathies: A tale of two proteins. Annals of Neurology, 59(3), 449–458.

    Article  CAS  PubMed  Google Scholar 

  17. Senard, J. M., Rai, S., & Lapeyre-Mestre, M. (1997). Prevalence of orthostatic hypotension in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 63(5), 584–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotagal, V., Albin, R. L., & Müller, M. L. (2012). Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Annals of Neurology, 71(4), 560–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poewe, W. (2008). Non-motor symptoms in Parkinson’s disease. The European Journal of Neurology, 15, 14–20.

    Article  PubMed  Google Scholar 

  20. Brandenburg, K., Holst, O. (2015). Glycolipids: Distribution and biological function. In eLS. Chichester: John Wiley & Sons.

    Google Scholar 

  21. Cooper, G. M. (2000). Cell–cell Interactions. In The cell: A molecular approach (2nd ed). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  22. Malhotra, R. (2012). Membrane glycolipids: Functional heterogeneity: A review. Biochemistry and Analytical Biochemistry, 1, 108.

    Article  Google Scholar 

  23. Shamim, A., Mahmood, T., Ahsan, F., et al. (2018). Lipids: An insight into the neurodegenerative disorders. Clinical Nutrition Experimental, 20, 1e19.

    Article  Google Scholar 

  24. Williams, G. J., & Thorson, J. S. (2009). Natural product glycosyltransferases: Properties and applications. Advances in Enzymology and Related Areas of Molecular Biology, 76, 55–119.

    CAS  PubMed  Google Scholar 

  25. Hakomori, S. (1995). Functional role of glycosphingolipids in cell recognition and signaling. Journal of Biochemistry, 118, 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry (6th ed.). New York: Freeman WH and Company.

    Google Scholar 

  27. Plomp, J. J., & Willison, H. J. (2009). Pathophysiological actions of neuropathyrelated anti-ganglioside antibodies at the neuromuscular junction. Journal of Physiology, 587, 3979–3999.

    Article  CAS  Google Scholar 

  28. Koutsouraki, E. F. (2009). Gangliosides and neurodegeneration. Encephalos, 46, 44–48.

    Google Scholar 

  29. Ledeen, R. W. (1985). Gangliosides of the neuron. Trends in Neurosciences, 8, 169–174.

    Article  CAS  Google Scholar 

  30. Ledeen, R. W., & Wu, G. (2006). GM1-ganglioside: another nuclear lipid that modulates nuclear calcium. GM1 potentiates the nuclear sodium-calcium exchanger. Canadian Journal of Physiology and Pharmacology, 84, 393–402.

    Article  CAS  PubMed  Google Scholar 

  31. Susuki, K., Baba, H., Tohyama, K., et al. (2007). Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia, 55, 746–757.

    Article  PubMed  Google Scholar 

  32. Hirabayashi, Y. (2012). A world of sphingolipids and glycolipids in the brain—Novel functions of simple lipids modified with glucose. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 88, 129–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarbu, M., Cozma, C., & Zamfir, A. D. (2017). Structure-to-function relationship of carbohydrates in the mechanism of lysosomal storage disorders (LSDs). Current Organic Chemistry, 21, 2719.

    CAS  Google Scholar 

  34. Naylor, S. (2005). Overview of biomarkers in disease, drug discovery and development. Drug Discovery World Spring.

    Google Scholar 

  35. Fantini, J. (2003). How sphingolipids bind and shape proteins: Molecular basis of lipid-protein interactions in lipid shells, rafts and related biomembrane domains. Cellular and Molecular Life Sciences, 60, 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  36. Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C. G., & Surewicz, W. K. (1997). Acceleration of amyloid fibril formation by specific binding of Aβ-(1–40) peptide to ganglioside-containing membrane vesicles. The Journal of Biological Chemistry, 272, 22987–22990.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuzaki, K., & Horikiri, C. (1999). Interactions of amyloid β-peptide (1–40) with ganglioside-containing membranes. Biochemistry, 38, 4137–4142.

    Article  CAS  PubMed  Google Scholar 

  38. McLaurin, J., Franklin, T., Fraser, P. E., & Chakrabartty, A. (1998). Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides. The Journal of Biological Chemistry, 273, 4506–4515.

    Article  CAS  PubMed  Google Scholar 

  39. Yanagisawa, K., Odaka, A., Suzuki, N., & Ihara, Y. (1995). GM1 ganglioside-bound amyloid beta-protein (A beta): A possible form of preamyloid in Alzheimer’s disease. Nature Medicine, 1, 1062–1066.

    Article  CAS  PubMed  Google Scholar 

  40. Choo-Smith, L. P., & Surewicz, W. K. (1997). The interaction between Alzheimer amyloid beta(1–40) peptide and ganglioside GM1-containing membranes. FEBS Letters, 402, 95–98.

    Article  CAS  PubMed  Google Scholar 

  41. Ariga, T., Kobayashi, K., Hasegawa, A., et al. (2001). Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Archives of Biochemistry and Biophysics, 388, 225–230.

    Article  CAS  PubMed  Google Scholar 

  42. Utsumi, M., Yamaguchi, Y., Sasakawa, H., et al. (2009). Up and- down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconjugate Journal, 26, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  43. Hughes, R. A., & Cornblath, D. R. (2005). Guillain-Barre syndrome. The Lancet, 366, 1653–1666.

    Article  CAS  Google Scholar 

  44. Yanagisawa, K. (2005). GM1 ganglioside and the seeding of amyloid in Alzheimer’s disease: Endogenous seed for Alzheimer amyloid. The Neuroscientist, 11, 250–260.

    Article  CAS  PubMed  Google Scholar 

  45. Yanagisawa, K. (2007). Role of gangliosides in Alzheimer’s disease. Biochimica et Biophysica Acta, 1768, 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  46. Yanagisawa, K. (2015). GM1 ganglioside and Alzheimer’s disease. Glycoconjugate Journal, 32, 87–91.

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, N., Fukata, Y., Fukata, M., & Yanagisawa, K. (2007). GM1-ganglioside-induced Abeta assembly on synaptic membranes of cultured neurons. Biochimica et Biophysica Acta, 1768, 1128–1137.

    Article  CAS  PubMed  Google Scholar 

  48. Ariga, T., McDonald, M. P., & Yu, R. K. (2008). Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—A review. Journal of Lipid Research, 49, 1157–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalanj-Bognar, S. (2006). Ganglioside catabolism is altered in fibroblasts and leukocytes from Alzheimer’s disease patients. Neurobiology of Aging, 27, 1354–1356.

    Article  CAS  PubMed  Google Scholar 

  50. Svennerholm, L., & Gottfries, C. G. (1994). Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). Journal of Neurochemistry, 62, 1039–1047.

    Article  CAS  PubMed  Google Scholar 

  51. Kracun, I., Rosner, H., Drnovsek, V., et al. (1991). Human brain gangliosides in development, aging and disease. The International Journal of Developmental Biology, 35, 289–295.

    CAS  PubMed  Google Scholar 

  52. Kracun, I., Kalanj, S., Talan-Hranilovic, J., & Cosovic, C. (1992). Cortical distribution of gangliosides in Alzheimer’s disease. Neurochemistry International, 20, 433–438.

    Article  CAS  PubMed  Google Scholar 

  53. Gylys, K. H., Fein, J. A., Yang, F., et al. (2007). Increased cholesterol in Abeta-positive nerve terminals from Alzheimer’s disease cortex. Neurobiology of Aging, 28, 8–17.

    Article  CAS  PubMed  Google Scholar 

  54. Blennow, K., Davidsson, P., Wallin, A., et al. (1991). Gangliosides in cerebrospinal fluid in ‘probable Alzheimer’s disease. Archives of Neurology, 48, 1032–1035.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, L., Zhang, K., Tan, L., Chen, Y. H., & Cao, Y. P. (2015). Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease. Alzheimer Disease and Associated Disorders, 29, 63–69.

    Article  PubMed  CAS  Google Scholar 

  56. Molander-Melin, M., Blennow, K., Bogdanovic, N., et al. (2005). Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent resistant membrane domains. Journal of Neurochemistry, 92, 171–182.

    Article  CAS  PubMed  Google Scholar 

  57. Pernber, Z., Blennow, K., Bogdanovic, N., et al. (2012). Altered distribution of the gangliosides GM1 and GM2 in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 33, 174–188.

    Article  CAS  PubMed  Google Scholar 

  58. Brooksbank, B. W. L., & McGovern, J. (1989). Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Molecular and Chemical Neuropathology, 11, 143–156.

    Article  CAS  PubMed  Google Scholar 

  59. Crino, P. B., Ullman, M. D., Vogt, B. A., et al. (1989). Brain gangliosides in dementia of the Alzheimer type. Archives of Neurology, 46, 398–401.

    Article  CAS  PubMed  Google Scholar 

  60. Hirano-Sakamaki, W., Sugiyama, E., Hayasaka, T., et al. (2015). Alzheimer’s disease is associated with disordered localization of ganglioside GM1 molecular species in the human dentate gyrus. FEBS Letters, 589, 3611–3616.

    Article  CAS  PubMed  Google Scholar 

  61. Yu, R. K., Usuki, S., & Ariga, T. (2006). Ganglioside molecular mimicry and its pathological roles in Guillain-Barré syndrome and related diseases. Infection and Immunity, 74, 6517–6527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuki, N., & Ariga, T. (1997). Antibodies to fucogangliosides in neurological diseases. Journal of the Neurological Sciences, 150, 81–84.

    Article  CAS  PubMed  Google Scholar 

  63. Chapman, J., Sela, B. A., Wertman, E., & Michaelson, D. M. (1988). Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neuroscience Letters, 86, 235–240.

    Article  CAS  PubMed  Google Scholar 

  64. Miura, Y., Miyaji, K., Chai, Y. L., et al. (2014). Autoantibodies to GM1 and GQ1bα are not biological markers of Alzheimer’s disease. Journal of Alzheimer's Disease, 42, 1165–1169.

    Article  CAS  PubMed  Google Scholar 

  65. Ando, S., Tanaka, Y., Waki, H., et al. (1998). Gangliosides and sialylcholesterol as modulators of synaptic functions. Annals of the New York Academy of Sciences, 845, 232–239.

    Article  CAS  PubMed  Google Scholar 

  66. Foley, P., Bradford, H. F., Docherty, M., et al. (1988). Evidence for the presence of antibodies to cholinergic neurons in the serum of patients with Alzheimer’s disease. Journal of Neurology, 235, 466–471.

    Article  CAS  PubMed  Google Scholar 

  67. Chapman, J., Bachar, O., Korczyn, A. D., et al. (1988). Antibodies to cholinergic neurons in Alzheimer’s disease. Journal of Neurochemistry, 51, 479–485.

    Article  CAS  PubMed  Google Scholar 

  68. Ariga, T., Yanagisawa, M., Wakade, C., et al. (2010). Ganglioside metabolism in a transgenic mouse model of Alzheimer’s disease: Expression of Chol-1α antigens in the brain. ASN Neuro, 2, 233–241.

    Article  CAS  Google Scholar 

  69. Hirabayashi, Y., Nakao, T., Irie, F., et al. (1992). Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain. The Journal of Biological Chemistry, 267, 12973–12978.

    Article  CAS  PubMed  Google Scholar 

  70. Svennerholm, L., Bostrom, K., Jungbjer, B., & Olsson, L. (1994). Membrane lipids of adult human brain: Lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. Journal of Neurochemistry, 63, 1802–1811.

    Article  CAS  PubMed  Google Scholar 

  71. Oikawa, N., Yamaguchi, H., Ogino, K., et al. (2009). Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport, 20, 1043–1046.

    Article  CAS  PubMed  Google Scholar 

  72. Wu, G., Lu, Z. H., Kulkarni, N., & Ledeen, R. W. (2012). Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. Journal of Neuroscience Research, 90, 1997–2008.

    Article  CAS  PubMed  Google Scholar 

  73. Hong, S., Ostaszewski, B. L., Yang, T., et al. (2014). Soluble Ab oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron, 82, 308–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Forsayeth, J., & Hadaczek, P. (2018). Ganglioside metabolism and Parkinson’s disease. Frontiers in Neuroscience, 12, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Martinez, Z., Zhu, M., Han, S., & Fink, A. L. (2007). GM1 specifically interacts with a-synuclein and inhibits fibrillation. Biochemistry, 46, 1868–1877.

    Article  CAS  PubMed  Google Scholar 

  76. Hatzifilippou, E., Arnaoutoglou, M., Koutsouraki, E., et al. (2015). High Levels of anti-ganglioside antibodies in patients with Parkinson's disease associated with cognitive decline. Int J Neurorehabilitation, 2, 2.

    Google Scholar 

  77. Harlalka, G. V., Lehman, A., Chioza, B., et al. (2013). Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain, 136.(Pt 12, 3618–3624.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sheikh, K. A., Sun, J., Liu, Y., et al. (1999). Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proceedings of the National Academy of Sciences of the United States of America, 96, 7532–7537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fantini, J., & Yahi, N. (2011). Molecular basis for the glycosphingolipid-binding specificity of a-synuclein: Key role of tyrosine 39 in membrane insertion. Journal of Molecular Biology, 408, 654–669.

    Article  CAS  PubMed  Google Scholar 

  80. Hadaczek, P., Wu, G., Sharma, N., et al. (2015). GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Experimental Neurology, 263, 177–189.

    Article  CAS  PubMed  Google Scholar 

  81. Seyfried, T. N., Choi, H., & Chevalier, A. (2018). Sex-related abnormalities in substantia nigra lipids in Parkinson’s disease. ASN Neuro, 10, 1759091418781889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yahi, N., & Fantini, J. (2014). Deciphering the glycolipid code of Alzheimer’s and Parkinson’s amyloid proteins allowed the creation of a universal ganglioside binding peptide. PLoS One, 9, e104751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bisaglia, M., Schievano, E., Caporale, A., et al. (2006). The 11-mer repeats of human a-synuclein in vesicle interactions and lipid composition discrimination: A cooperative role. Biopolymers, 84, 310–316.

    Article  CAS  PubMed  Google Scholar 

  84. Dettmer, U., Newman, A. J., Soldner, F., et al. (2015). Parkinson-causing a-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nature Communications, 6, 7314.

    Article  PubMed  Google Scholar 

  85. Beavan, M. S., & Schapira, A. H. (2013). Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Annals of Medicine, 45, 511–521.

    Article  CAS  PubMed  Google Scholar 

  86. Mazzulli, J. R., Xu, Y. H., Sun, Y., et al. (2011). Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146, 37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Magalhaes, J., Gegg, M. E., Migdalska-Richards, A., et al. (2016). Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: Relevance to Parkinson disease. Human Molecular Genetics, 25, 3432–3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grabowski, G. A. (2008). Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet, 372, 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  89. Beutler, E., & Grabowski, G. A. (2001). The metabolic and molecular basis of inherited disease (pp. 3635–3668). New York: McGraw-Hill.

    Google Scholar 

  90. Murphy, K. E., Gysbers, A. M., Abbott, S. K., et al. (2014). Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson’s disease. Brain, 137, 834–848.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chiasserini, D., Paciotti, S., Eusebi, P., et al. (2015). Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Molecular Neurodegeneration, 10, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Gegg, M. E., Burke, D., Heales, S. J., et al. (2012). Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Annals of Neurology, 72, 455–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghauharali-van der Vlugt, K., Langeveld, M., Poppema, A., et al. (2008). Prominent increase in plasma ganglioside GM3 is associated with clinical manifestations of type I Gaucher disease. Clinica Chimica Acta, 389, 109–113.

    Article  CAS  Google Scholar 

  94. Meikle, P. J., Whitfield, P. D., Rozaklis, T., et al. (2008). Plasma lipids are altered in Gaucher disease: Biochemical markers to evaluate therapeutic intervention. Blood Cells, Molecules & Diseases, 40, 420–427.

    Article  CAS  Google Scholar 

  95. Clark, L. N., Chan, R., Cheng, R., et al. (2015). Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease. PLoS One, 10, e0125204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gegg, M. E., Sweet, L., Wang, B. H., et al. (2015). No evidence for substrate accumulation in Parkinson brains with GBA mutations. Movement Disorders, 30, 1085–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chan, R. B., Perotte, A. J., Zhou, B., et al. (2017). Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis. PLoS One, 12, e0172348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bellettato, C. M., & Scarpa, M. (2010). Pathophysiology of neuropathic lysosomal storage disorders. Journal of Inherited Metabolic Disease, 33, 347–362.

    Article  CAS  PubMed  Google Scholar 

  99. Shachar, T., Lo Bianco, C., Recchia, A., et al. (2011). Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Movement Disorders, 26, 1593–1604.

    Article  PubMed  Google Scholar 

  100. Kodama, T., Togawa, T., Tsukimura, T., et al. (2011). Lyso-GM2 ganglioside: A possible biomarker of Tay-Sachs disease and Sandhoff disease. PLoS One, 6, e29074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sack Jr., G. H. (1980). Clinical diversity in Gaucher’s disease. The Johns Hopkins Medical Journal, 146, 166–170.

    PubMed  Google Scholar 

  102. Sidransky, E., Nalls, M. A., Aasly, J. O., et al. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. The New England Journal of Medicine, 361, 1651–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sidransky, E. (2005). Gaucher disease and parkinsonism. Molecular Genetics and Metabolism, 84, 302–304.

    Article  CAS  PubMed  Google Scholar 

  104. Tayebi, N., Walker, J., Stubblefield, B., et al. (2003). Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Molecular Genetics and Metabolism, 79, 104–109.

    Article  CAS  PubMed  Google Scholar 

  105. Goker-Alpan, O., Schiffmann, R., LaMarca, M. E., et al. (2004). Parkinsonism among Gaucher disease carriers. Journal of Medical Genetics, 41, 937–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alcalay, R. N., Dinur, T., Quinn, T., et al. (2014). Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurology, 71, 752–757.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dekker, N., van Dussen, L., Hollak, C. E., et al. (2011). Elevated plasma glucosylsphingosine in Gaucher disease: Relation to phenotype, storage cell markers, and therapeutic response. Blood, 118, e118–e127.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Muller, M. V. G., Petri, A., Vianna, L. P., et al. (2010). Quantification of glucosylceramide in plasma of Gaucher disease patients. Brazilian Journal of Pharmaceutical Sciences, 46, 643–649.

    Article  CAS  Google Scholar 

  109. Gornati, R., Bembi, B., Tong, X., et al. (1998). Total glycolipid and glucosylceramide content in serum and urine of patients with Gaucher’s Disease type 3 before and after enzyme replacement therapy. Clinica Chimica Acta, 271, 151–161.

    Article  Google Scholar 

  110. Zamfir, A. D. (2014). Neurological analyses: Focus on gangliosides and mass spectrometry. Advances in Experimental Medicine and Biology, 806, 153–204.

    Article  CAS  PubMed  Google Scholar 

  111. Sisu, E., Flangea, C., Serb, A., et al. (2011). High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. Electrophoresis, 32, 1591–1609.

    CAS  PubMed  Google Scholar 

  112. Siew, J. J., & Chern, Y. (2018 May 14). Microglial lectins in health and neurological diseases. Frontiers in Molecular Neuroscience, 11, 158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Suzuki, M., Sango, K., Wada, K., & Nagai, Y. (2018). Pathological role of lipid interaction with α-synuclein in Parkinson’s disease. Neurochemistry International, 119, 97–106.

    Article  CAS  PubMed  Google Scholar 

  114. Li, T. A., & Schnaar, R. L. (2018). Congenital disorders of ganglioside biosynthesis. Progress in Molecular Biology and Translational Science, 156, 63–82.

    Article  PubMed  CAS  Google Scholar 

  115. Robu, A., Schiopu, C., Capitan, F., & Zamfir, A. D. (2016). Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma. Analytical Biochemistry, 509, 1–11.

    Article  CAS  PubMed  Google Scholar 

  116. Sarbu, M., Dehelean, L., Munteanu, C. V., et al. (2017). Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry. Analytical Biochemistry, 521, 40–54.

    Article  CAS  PubMed  Google Scholar 

  117. Capitan, F., Robu, A., Popescu, L., et al. (2015). B subunit monomers of Cholerae toxin bind G1 ganglioside class as revealed by chip-nanoelectrospray multistage mass spectrometry. Journal of Carbohydrate Chemistry, 34, 388–408.

    Article  CAS  Google Scholar 

  118. Cozma, I., Sarbu, M., Ilie, C., & Zamfir, A. D. (2017). Structural analysis by electrospray ionization mass spectrometry of GT1 ganglioside fraction isolated from fetal brain. Journal of Carbohydrate Chemistry, 36, 247–264.

    Article  CAS  Google Scholar 

  119. Zhang, Y., Wang, J., Liu, J., et al. (2016). Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain. Scientific Reports, 6, 25289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sarbu, M., & Zamfir, A. D. (2018). Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis, 39, 1155–1170.

    Article  CAS  PubMed  Google Scholar 

  121. Zamfir, A. D., Flangea, C., Altmann, F., & Rizzi, A. M. (2011). Glycosylation analysis of proteins, proteoglycans and glycolipids by CE-MS. Advances in Chromatography, 49, 135–186.

    CAS  PubMed  Google Scholar 

  122. Almeida, R., Mosoarca, C., Chirita, M., et al. (2008). Coupling of fully automated chip-based electrospray ionization to high capacity ion trap mass spectrometer for ganglioside analysis. Analytical Biochemistry, 378, 43–52.

    Article  CAS  PubMed  Google Scholar 

  123. Huang, Q., Liu, D., Xin, B., et al. (2016). Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC-ESI-MS. Analytica Chimica Acta, 929, 31–38.

    Article  CAS  PubMed  Google Scholar 

  124. Sarbu, M., Robu, A., Ghiulai, R., et al. (2016). Electrospray ionization ion mobility mass spectrometry of human brain gangliosides. Analytical Chemistry, 88, 5166–5178.

    Article  CAS  PubMed  Google Scholar 

  125. Fuller, D. R., Conant, C. R., El-Baba, T. J., et al. (2018). Conformationally regulated peptide bond cleavage in bradykinin. Journal of the American Chemical Society, 140, 9357–9360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. El-Baba, T. J., Fuller, D. R., Woodall, D. W., et al. (2018). Melting proteins confined in nanodroplets with 10.6 μm light provides clues about early steps of denaturation. Chemical communications (Cambridge, England), 54, 3270–3273.

    Article  CAS  Google Scholar 

  127. Jacobs, A., Hoover, H., Smith, E., et al. (2018). The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication. Nucleic Acids Research, 46, 324–335.

    Article  CAS  PubMed  Google Scholar 

  128. Musbat, L., Nihamkin, M., Toker, Y., et al. (2017). Measurements of the stabilities of isolated retinal chromophores. Physical Review E, 95, 012406.

    Article  CAS  PubMed  Google Scholar 

  129. Sarbu, M., Vukelić, Ž., Clemmer, D. E., & Zamfir, A. D. (2018). Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst. https://doi.org/10.1039/c8an01118d

    Article  CAS  PubMed  Google Scholar 

  130. Škrášková, K., Claude, E., Jones, E. A., et al. (2016). Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods, 104, 69–78.

    Article  PubMed  CAS  Google Scholar 

  131. Jackson, S. N., Colsch, B., & Egan, T. (2011). Gangliosides’ analysis by MALDI-ion mobility MS. Analyst, 136, 463–466.

    Article  CAS  PubMed  Google Scholar 

  132. Kar, S., Slowikowski, S. P., Westaway, D., & Mount, H. T. (2004). Interactions between beta-amyloid and central cholinergic neurons: Implications for Alzheimer’s disease. Journal of Psychiatry and Neuroscience, 29, 427–441.

    PubMed  PubMed Central  Google Scholar 

  133. Fuentealba, R. A., Farias, G., Scheu, J., et al. (2004). Signal transduction during amyloid-beta-peptide neurotoxicity: Role in Alzheimer disease. Brain Research Reviews, 47, 275–289.

    Article  CAS  PubMed  Google Scholar 

  134. Svennerholm, L., Brane, G., Karlsson, I., et al. (2002). Alzheimer disease—Effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dementia and Geriatric Cognitive Disorders, 14, 128–136.

    Article  CAS  PubMed  Google Scholar 

  135. Wakabayashi, M., Okada, T., Kozutsumi, Y., & Matsuzaki, K. (2005). GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochemical and Biophysical Research Communications, 328, 1019–1023.

    Article  CAS  PubMed  Google Scholar 

  136. Fukami, Y., Ariga, T., Yamada, M., & Yuki, N. (2017). Brain gangliosides in Alzheimer’s disease: Increased expression of cholinergic neuron-specific gangliosides. Current Alzheimer Research, 14, 586–591.

    Article  CAS  PubMed  Google Scholar 

  137. Kalanj, S., Kracun, I., Rosner, H., & Cosović, C. (1991). Regional distribution of brain gangliosides in Alzheimer’s disease. Neurologia Croatica, 40, 269–281.

    CAS  PubMed  Google Scholar 

  138. Armirotti, A., Basit, A., Realini, N., et al. (2014). Sample preparation and orthogonal chromatography for broad polarity range plasma metabolomics: Application to human subjects with neurodegenerative dementia. Analytical Biochemistry, 455, 48–54.

    Article  CAS  PubMed  Google Scholar 

  139. Touboul, D., & Gaudin, M. (2014). Lipidomics of Alzheimer’s disease. Bioanalysis, 6, 541–561.

    Article  CAS  PubMed  Google Scholar 

  140. Oikawa, N., Matsubara, T., Fukuda, R., et al. (2015). Imbalance in fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition in the precuneus. PLoS One, 10, e0121356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Jung, J. S., Shin, K. O., Lee, Y. M., et al. (2013). Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochimica et Biophysica Acta, 1831, 1016–1026.

    Article  CAS  PubMed  Google Scholar 

  142. Caughlin, S., Hepburn, J. D., Park, D. H., et al. (2015). Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of Aβ toxicity and stroke. PLoS One, 10, e0130364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Michno, W., Wehrli, P. M., Zetterberg, H., et al. (2018). GM1 locates to mature amyloid structures implicating a prominent role for glycolipid-protein interactions in Alzheimer pathology. Biochimica et Biophysica Acta, Proteins and Proteomics. https://doi.org/10.1016/j.bbapap.2018.09.010

    Article  CAS  Google Scholar 

  144. Taguchi, Y. V., Liu, J., Ruan, J., et al. (2017). Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson's disease. The Journal of Neuroscience, 37, 9617–9631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, J., Zhang, X., Wang, L., & Yang, C. (2017). High performance liquid chromatography-mass spectrometry (LC-MS) based quantitative lipidomics study of ganglioside-NANA-3 plasma to establish its association with Parkinson’s disease patients. Medical Science Monitor, 23, 5345–5353.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Boutin, M., Sun, Y., Shacka, J. J., & Auray-Blais, C. (2016). Tandem mass spectrometry multiplex analysis of glucosylceramide and galactosylceramide isoforms in brain tissues at different stages of Parkinson disease. Analytical Chemistry, 88, 1856–1563.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Romanian National Authority for Scientific Research, UEFISCDI, through projects PN-III-P4-ID-PCE-2016-0073 and PN-III-P1-1.2-PCCDI-2017-0046 granted to A.D.Z. and PN-III-P1-1.1-PD-2016-0256 granted to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Dehelean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dehelean, L., Sarbu, M., Petrut, A., Zamfir, A.D. (2019). Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_42

Download citation

Publish with us

Policies and ethics