Skip to main content

Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

Innovations in approaches for early detection and individual risk assessment of different cancers, including breast cancer (BC), are needed to reduce cancer morbidity and associated mortality. The assessment of potential cancer biomarkers in accessible bodily fluids provides a novel approach to identify the risk and/or onset of cancer. Biomarkers are biomolecules, such as proteins, that are indicative of an abnormality or a disease. Human milk is vastly underutilized biospecimen that offers the opportunity to investigate potential protein BC-biomarkers in young, reproductively active women. As a first step, we have examined the entire protein pattern in human milk samples from breastfeeding mothers with cancer, who were diagnosed either before or after milk donation, and from women without cancer, using mass spectrometry (MS)-based proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

BC:

Breast cancer

DDA:

Data dependent acquisition

DDT:

Dithiothreitol

IAA:

Iodoacetamide

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

nanoLC-MS/MS:

Nano-liquid chromatography tandem mass spectrometry

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M., & Jemal, A. (2017). Global Cancer in women: Burden and trends. Cancer Epidemiology, Biomarkers & Prevention, 26(4), 444–457.

    Article  Google Scholar 

  2. National Cancer Institute. (2018). SEER cancer statistics factsheets: Breast cancer. Bethesda, MD: National Cancer Institute.

    Google Scholar 

  3. Nichols, H. B., Schoemaker, M. J., Cai, J., Xu, J., Wright, L. B., Brook, M. N., et al. (2018). Breast cancer risk after recent childbirth: A pooled analysis of 15 prospective studies. Annals of Internal Medicine.

    Google Scholar 

  4. Anderson, B. O., Petrek, J. A., Byrd, D. R., Senie, R. T., & Borgen, P. I. (1996). Pregnancy influences breast cancer stage at diagnosis in women 30 years of age and younger. Annals of Surgical Oncology, 3(2), 204–211.

    Article  CAS  PubMed  Google Scholar 

  5. Borges, V. F., & Schedin, P. J. (2012). Pregnancy-associated breast cancer: An entity needing refinement of the definition. Cancer, 118(13), 3226–3228.

    Article  PubMed  Google Scholar 

  6. Murphy, C. G., Mallam, D., Stein, S., Patil, S., Howard, J., Sklarin, N., et al. (2012). Current or recent pregnancy is associated with adverse pathologic features but not impaired survival in early breast cancer. Cancer, 118(13), 3254–3259.

    Article  PubMed  Google Scholar 

  7. Langer, A., Mohallem, M., Stevens, D., Rouzier, R., Lerebours, F., & Cherel, P. (2014). A single-institution study of 117 pregnancy-associated breast cancers (PABC): Presentation, imaging, clinicopathological data and outcome. Diagnostic and Interventional Imaging, 95(4), 435–441.

    Article  CAS  PubMed  Google Scholar 

  8. American Cancer Society. (2013). Breast cancer facts and figures 2013–2014. New York City, NY: American Cancer Society.

    Google Scholar 

  9. U.S. Preventive Services Task Force. (2010). Screening for breast cancer, topic page. Washington, DC: U.S. Preventive Services Task Force.

    Google Scholar 

  10. Beyer, I., Mutschler, N., Blum, K. S., & Mohrmann, S. (2015). Breast lesions during pregnancy - a diagnostic challenge: Case report. Breast Care (Basel), 10(3), 207–210.

    Article  Google Scholar 

  11. Joshi, S., Dialani, V., Marotti, J., Mehta, T. S., & Slanetz, P. J. (2013). Breast disease in the pregnant and lactating patient: Radiological-pathological correlation. Insights Imaging, 4(5), 527–538.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang, H. P., Schneider, S. S., Chisholm, C. M., Browne, E. P., Mahmood, S., Gierach, G. L., et al. (2015). Association of TGF-β2 levels in breast milk with severity of breast biopsy diagnosis. Cancer Causes & Control, 26(3), 345–354.

    Article  Google Scholar 

  13. Arcaro, K. F., Browne, E. P., Qin, W., Zhang, K., Anderton, D. L., & Sauter, E. R. (2012). Differential expression of cancer-related proteins in paired breast milk samples from women with breast cancer. Journal of Human Lactation, 28(4), 543–546.

    Article  PubMed  Google Scholar 

  14. Wong, C. M., Anderton, D. L., Smith-Schneider, S., Wing, M. A., Greven, M. C., & Arcaro, K. F. (2010). Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women. Epigenetics, 5(7), 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qin, W., Zhang, K., Kliethermes, B., Ruhlen, R. L., Browne, E. P., Arcaro, K. F., et al. (2012). Differential expression of cancer associated proteins in breast milk based on age at first full term pregnancy. BMC Cancer, 12(1), 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Browne, E. P., Punska, E. C., Lenington, S., Otis, C. N., Anderton, D. L., & Arcaro, K. F. (2011). Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy. Epigenetics, 6(12), 1425–1435.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy, J., Sherman, M. E., Browne, E. P., Caballero, A. I., Punska, E. C., Pfeiffer, R. M., et al. (2016). Potential of breastmilk analysis to inform early events in breast carcinogenesis: Rationale and considerations. Breast Cancer Research and Treatment, 157(1), 13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faupel-Badger, J. M., Arcaro, K. F., Balkam, J. J., Eliassen, A. H., Hassiotou, F., Lebrilla, C. B., et al. (2012). Postpartum remodeling, lactation, and breast cancer risk: Summary of a National Cancer Institute–sponsored workshop. Journal of the National Cancer Institute, 105(3), 166–174.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schneider, S. S., Aslebagh, R., Wetie, A. G., Sturgeon, S. R., Darie, C. C., & Arcaro, K. F. (2014). Using breast milk to assess breast cancer risk: The role of mass spectrometry-based proteomics. Advances in Experimental Medicine and Biology, 806, 399–408.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson, P., Kadlubar, F., Vena, S., Hill, H., McClure, G., McDaniel, L., et al. (1998). Exfoliated ductal epithelial cells in human breast milk: A source of target tissue DNA for molecular epidemiologic studies of breast cancer. Cancer Epidemiology and Prevention Biomarkers, 7(1), 37–42.

    CAS  Google Scholar 

  21. Gu, Y.-Q., Gong, G., Xu, Z.-L., Wang, L.-Y., Fang, M.-L., Zhou, H., et al. (2014). miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. International Journal of Molecular Medicine, 33(5), 1243–1249.

    Article  CAS  PubMed  Google Scholar 

  22. Aslebagh, R., Channaveerappa, D., Arcaro, K. F., & Darie, C. C. (2018). Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis, 39(4), 653–665.

    Article  CAS  PubMed  Google Scholar 

  23. Aslebagh, R., Channaveerappa, D., Arcaro, K. F., & Darie, C. C. (2018). Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer. Electrophoresis, 39(14), 1723–1734.

    Article  CAS  Google Scholar 

  24. Monte, L., & Ellis, R. (2014). Fertility of Women in the United States: 2012. Suitland, MD: U.S. Census Bureau.

    Google Scholar 

  25. Linder, N., Lundin, J., Isola, J., Lundin, M., Raivio, K. O., & Joensuu, H. (2005). Down-regulated xanthine oxidoreductase is a feature of aggressive breast cancer. Clinical Cancer Research, 11(12), 4372–4381.

    Article  CAS  PubMed  Google Scholar 

  26. Fini, M. A., Monks, J., Farabaugh, S. M., & Wright, R. M. (2011). Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1. Molecular Cancer Research, 9, 1242.

    Article  CAS  PubMed  Google Scholar 

  27. Schramm, G., Surmann, E.-M., Wiesberg, S., Oswald, M., Reinelt, G., Eils, R., et al. (2010). Analyzing the regulation of metabolic pathways in human breast cancer. BMC Medical Genomics, 3(1), 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bártková, J., Burchell, J., Bártek, J., Vojtěšek, B., Taylor-Papadimitriou, J., Rejthar, A., et al. (1987). Lack of β-casein production by human breast tumours revealed by monoclonal antibodies. European Journal of Cancer and Clinical Oncology, 23(10), 1557–1563.

    Article  PubMed  Google Scholar 

  29. Flavin, R., Peluso, S., Nguyen, P. L., & Loda, M. (2010). Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 6(4), 551–562.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. Y., Kuhajda, F. P., Li, J., Finch, T. T., Cheng, P., Koh, C., et al. (2004). Fatty acid synthase as a tumor marker: Its extracellular expression in human breast cancer. Journal of Experimental Therapeutics & Oncology, 4(2).

    Google Scholar 

  31. Wang, Y. Y., Kuhajda, F. P., Li, J. N., Pizer, E. S., Han, W. F., Sokoll, L. J., et al. (2001). Fatty acid synthase (FAS) expression in human breast cancer cell culture supernatants and in breast cancer patients. Cancer Letters, 167(1), 99–104.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamura, J., Miyoshi, Y., Tamaki, Y., Taguchi, T., Iwao, K., Monden, M., et al. (2004). mRNA expression level of estrogen-inducible gene, α1-antichymotrypsin, is a predictor of early tumor recurrence in patients with invasive breast cancers. Cancer Science, 95(11), 887–892.

    Article  CAS  PubMed  Google Scholar 

  33. Higashiyama, M., Doi, O., Yokouchi, H., Kodama, K., Nakamori, S., & Tateishi, R. (1995). Alpha-1-antichymotrypsin expression in lung adenocarcinoma and its possible association with tumor progression. Cancer, 76(8), 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  34. Cho, N. H., Park, C., & Park, D. S. (1997). Expression of alpha-1-antichymotrypsin in prostate carcinoma. Journal of Korean Medical Science, 12(3), 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Channaveerappa, D., Lux, J. C., Wormwood, K. L., Heintz, T. A., McLerie, M., Treat, J. A., et al. (2017). Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. Journal of Cellular and Molecular Medicine, 21(9), 2223–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cole, L. A. (2009). New discoveries on the biology and detection of human chorionic gonadotropin. Reproductive Biology and Endocrinology, 7(1), 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gregory, J. J., & Finlay, J. L. (1999). α-Fetoprotein and β-human chorionic gonadotropin. Drugs, 57(4), 463–467.

    Article  PubMed  Google Scholar 

  38. Hall, R. E., Aspinall, J., Horsfall, D., Birrell, S., Bentel, J., Sutherland, R., et al. (1996). Expression of the androgen receptor and an androgen-responsive protein, apolipoprotein D, in human breast cancer. British Journal of Cancer, 74(8), 1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diez-Itza, I., Vizoso, F., Merino, A. M., Sánchez, L. M., Tolivia, J., Fernandez, J., et al. (1994). Expression and prognostic significance of apolipoprotein D in breast cancer. The American Journal of Pathology, 144(2), 310.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sturge, J., Todd, S. K., Kogianni, G., McCarthy, A., & Isacke, C. M. (2007). Mannose receptor regulation of macrophage cell migration. Journal of Leukocyte Biology, 82(3), 585–593.

    Article  CAS  PubMed  Google Scholar 

  41. Brown, N. J., Higham, S. E., Perunovic, B., Arafa, M., Balasubramanian, S., & Rehman, I. (2013). Lactate dehydrogenase-B is silenced by promoter methylation in a high frequency of human breast cancers. PLoS One, 8(2), e57697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, L., Wei, Y., Song, A., & Li, Y. (2016). Association study between genome-wide significant variants of vitamin B12 metabolism and gastric cancer in a han Chinese population. IUBMB Life, 68(4), 303–310.

    Article  CAS  PubMed  Google Scholar 

  43. Castillo-Tong, D. C., Pils, D., Heinze, G., Braicu, I., Sehouli, J., Reinthaller, A., et al. (2014). Association of myeloperoxidase with ovarian cancer. Tumor Biology, 35(1), 141–148.

    Article  CAS  PubMed  Google Scholar 

  44. Spencer, V. A. (2011). Actin—Towards a deeper understanding of the relationship between tissue context, cellular function and tumorigenesis. Cancers, 3(4), 4269–4280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stetler-Stevenson, W. G. (1990). Type IV collagenases in tumor invasion and metastasis. Cancer and Metastasis Reviews, 9(4), 289–303.

    Article  CAS  PubMed  Google Scholar 

  46. Kao, R. T., & Stern, R. (1986). Collagenases in human breast carcinoma cell lines. Cancer Research, 46(3), 1349–1354.

    CAS  PubMed  Google Scholar 

  47. Liu, X.-H., & Rose, D. P. (1994). Stimulation of type IV collagenase expression by linoleic acid in a metastatic human breast cancer cell line. Cancer Letters, 76(1), 71–77.

    Article  CAS  PubMed  Google Scholar 

  48. Benbow, U., Schoenermark, M. P., Orndorff, K. A., Givan, A. L., & Brinckerhoff, C. E. (1999). Human breast cancer cells activate procollagenase-1 and invade type I collagen: Invasion is inhibited by all-trans retinoic acid. Clinical & Experimental Metastasis, 17(3), 231–238.

    Article  CAS  Google Scholar 

  49. Simpson-Haidaris, P., & Rybarczyk, B. (2001). Tumors and fibrinogen. Annals of the New York Academy of Sciences, 936(1), 406–425.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, L., Bi, J., Yao, C., Xu, X., Li, X., Wang, S., et al. (2010). Annexin A1 expression and its prognostic significance in human breast cancer. Neoplasma, 57(3), 253–259.

    Article  CAS  PubMed  Google Scholar 

  51. Kloth, L., Belge, G., Burchardt, K., Loeschke, S., Wosniok, W., Fu, X., et al. (2011). Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue. BMC Clinical Pathology, 11(1), 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ostler, D. A., Prieto, V. G., Reed, J. A., Deavers, M. T., Lazar, A. J., & Ivan, D. (2010). Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: An immunohistochemical study of 117 cases. Modern Pathology, 23(4), 567.

    Article  CAS  PubMed  Google Scholar 

  53. Straub, B. K., Herpel, E., Singer, S., Zimbelmann, R., Breuhahn, K., Macher-Goeppinger, S., et al. (2010). Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Modern Pathology, 23(3), 480.

    Article  CAS  PubMed  Google Scholar 

  54. Divyya, S., Naushad, S. M., Addlagatta, A., Murthy, P., Reddy, C. R., Digumarti, R. R., et al. (2013). Association of glutamate carboxypeptidase II (GCPII) haplotypes with breast and prostate cancer risk. Gene, 516(1), 76–81.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, X., Yin, L., Rao, P., Stein, R., Harsch, K. M., Lee, Z., et al. (2007). Targeted treatment of prostate cancer. Journal of Cellular Biochemistry, 102(3), 571–579.

    Article  CAS  PubMed  Google Scholar 

  56. Xiao, S., Liu, L., Lu, X., Long, J., Zhou, X., & Fang, M. (2015). The prognostic significance of bromodomain PHD-finger transcription factor in colorectal carcinoma and association with vimentin and E-cadherin. Journal of Cancer Research and Clinical Oncology, 141(8), 1465–1474.

    Article  CAS  PubMed  Google Scholar 

  57. Sun, F., Ding, W., He, J.-H., Wang, X.-J., Ma, Z.-B., & Li, Y.-F. (2015). Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival. BMC Cancer, 15(1), 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kwon, Y.-J., Lee, S. J., Koh, J. S., Kim, S. H., Lee, H. W., Kang, M. C., et al. (2012). Genome-wide analysis of DNA methylation and the gene expression change in lung cancer. Journal of Thoracic Oncology, 7(1), 20–33.

    Article  CAS  PubMed  Google Scholar 

  59. Gibbs, G. M., Roelants, K., & O’bryan, M. K. (2008). The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—Roles in reproduction, cancer, and immune defense. Endocrine Reviews, 29(7), 865–897.

    Google Scholar 

  60. Orend, G., & Chiquet-Ehrismann, R. (2006). Tenascin-C induced signaling in cancer. Cancer Letters, 244(2), 143–163.

    Article  CAS  PubMed  Google Scholar 

  61. Jahkola, T., Toivonen, T., Virtanen, I., von Smitten, K., Nordling, S., von Boguslawski, K., et al. (1998). Tenascin-C expression in invasion border of early breast cancer: A predictor of local and distant recurrence. British Journal of Cancer, 78(11), 1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dandachi, N., Hauser-Kronberger, C., More, E., Wiesener, B., Hacker, G., Dietze, O., et al. (2001). Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: Correlation with histopathological parameters, hormone receptors, and oncoproteins. The Journal of Pathology, 193(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  63. Adams, M., Jones, J. L., Walker, R. A., Pringle, J. H., & Bell, S. C. (2002). Changes in tenascin-C isoform expression in invasive and preinvasive breast disease. Cancer Research, 62(11), 3289–3297.

    CAS  PubMed  Google Scholar 

  64. Scherberich, A., Tucker, R. P., Degen, M., Brown-Luedi, M., Andres, A.-C., & Chiquet-Ehrismann, R. (2005). Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene, 24(9), 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  65. Kawakita, T., Sasaki, H., Hoshiba, T., Asamoto, A., & Williamson, E. (2012). Amylase-producing ovarian carcinoma: A case report and a retrospective study. Gynecologic Oncology Case Reports, 2(3), 112–114.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tomita, N., Matsuura, N., Horii, A., Emi, M., Nishide, T., Ogawa, M., et al. (1988). Expression of α-amylase in human lung cancers. Cancer Research, 48(11), 3288–3291.

    Google Scholar 

  67. Lenler-Petersen, P., Grove, A., Brock, A., & Jelnes, R. (1994). Alpha-amylase in resectable lung cancer. European Respiratory Journal, 7(5), 941–945.

    CAS  Google Scholar 

  68. Hassan, M. I., Waheed, A., Yadav, S., Singh, T. P., & Ahmad, F. (2008). Zinc α2-glycoprotein: A multidisciplinary protein. Molecular Cancer Research, 6(6), 892–906.

    Article  CAS  PubMed  Google Scholar 

  69. Dubois, V., Delort, L., Mishellany, F., Jarde, T., Billard, H., Lequeux, C., et al. (2010). Zinc-α2-glycoprotein: A new biomarker of breast Cancer? Anticancer Research, 30(7), 2919–2925.

    CAS  PubMed  Google Scholar 

  70. Díez-Itza, I., Sánchez, L. M., Allende, M. T., Vizoso, F., Ruibal, A., & López-Otín, C. (1993). Zn-α2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. European Journal of Cancer, 29(9), 1256–1260.

    Article  Google Scholar 

  71. Freije, J. P., Fueyo, A., Uría, J., & López-Otin, C. (1991). Human Zn-α2-glycoprotein cDNA cloning and expression analysis in benign and malignant breast tissues. FEBS Letters, 290(1–2), 247–249.

    Article  CAS  PubMed  Google Scholar 

  72. Millan, A., & Huerta, S. (2009). Apoptosis-inducing factor and colon cancer. Journal of Surgical Research, 151(1), 163–170.

    Article  CAS  Google Scholar 

  73. Lewis, E. M., Wilkinson, A. S., Jackson, J. S., Mehra, R., Varambally, S., Chinnaiyan, A. M., et al. (2012). The enzymatic activity of apoptosis-inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells. Journal of Biological Chemistry, 287(52), 43862–43875.

    Article  CAS  Google Scholar 

  74. Lee, J. W., Jeong, E. G., Soung, Y. H., Kim, S. Y., Nam, S. W., Kim, S. H., et al. (2006). Immunohistochemical analysis of apoptosis-inducing factor (AIF) expression in gastric carcinomas. Pathology-Research and Practice, 202(7), 497–501.

    Article  CAS  Google Scholar 

  75. Aaboe, M., Offersen, B. V., Christensen, A., & Andreasen, P. A. (2003). Vitronectin in human breast carcinomas. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1638(1), 72–82.

    Article  CAS  Google Scholar 

  76. Seve, P., Ray-Coquard, I., Trillet-Lenoir, V., Sawyer, M., Hanson, J., Broussolle, C., et al. (2006). Low serum albumin levels and liver metastasis are powerful prognostic markers for survival in patients with carcinomas of unknown primary site. Cancer, 107(11), 2698–2705.

    Article  CAS  PubMed  Google Scholar 

  77. Gopal, S. H., & Das, S. K. (2016). Role of Lactoferrin in the carcinogenesis of triple-negative breast Cancer. Journal of Cancer Clinical Trials, 1(3).

    Google Scholar 

  78. Benaïssa, M., Peyrat, J. P., Hornez, L., Mariller, C., Mazurier, J., & Pierce, A. (2005). Expression and prognostic value of lactoferrin mRNA isoforms in human breast cancer. International Journal of Cancer, 114(2), 299–306.

    Article  PubMed  CAS  Google Scholar 

  79. Penco, S., Caligo, M. A., Cipollini, G., Bevilacqua, G., & Garre, C. (1999). Lactoferrin expression in human breast cancer. Cancer Biochemistry Biophysics, 17(1–2), 163–178.

    CAS  PubMed  Google Scholar 

  80. Naleskina, L., Lukianova, N. Y., Sobchenko, S., Storchai, D., & Chekhun, V. (2016). Lactoferrin expression in breast cancer in relation to biologic properties of tumors and clinical features of disease. Experimental Oncology, 38(3), 181–186.

    Article  CAS  PubMed  Google Scholar 

  81. Lehner, A., Magdolen, V., Schuster, T., Kotzsch, M., Kiechle, M., Meindl, A., et al. (2013). Downregulation of serine protease HTRA1 is associated with poor survival in breast cancer. PLoS One, 8(4), e60359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tufail, R., Jorda, M., Zhao, W., Reis, I., & Nawaz, Z. (2012). Loss of yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas. Breast Cancer Research and Treatment, 131(3), 743–750.

    Article  CAS  PubMed  Google Scholar 

  83. Yuan, M., Tomlinson, V., Lara, R., Holliday, D., Chelala, C., Harada, T., et al. (2008). Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death and Differentiation, 15(11), 1752.

    Article  CAS  PubMed  Google Scholar 

  84. Lehn, S., Tobin, N. P., Sims, A. H., Stål, O., Jirström, K., Axelson, H., et al. (2014). Decreased expression of Yes-associated protein is associated with outcome in the luminal a breast cancer subgroup and with an impaired tamoxifen response. BMC Cancer, 14(1), 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lei, B., Lionetti, V., Young, M. E., Chandler, M. P., d’Agostino, C., Kang, E., et al. (2004). Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. Journal of Molecular and Cellular Cardiology, 36(4), 567–576.

    Article  CAS  PubMed  Google Scholar 

  86. Légaré, S., Cavallone, L., Mamo, A., Chabot, C., Sirois, I., Magliocco, A., et al. (2015). The estrogen receptor cofactor SPEN functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Cancer Research, 75(20), 4351–4363.

    Article  PubMed  CAS  Google Scholar 

  87. Marnef, A., & Standart, N. (2010). Pat1 proteins: A life in translation, translation repression and mRNA decay. London: Portland Press Limited.

    Google Scholar 

  88. Oberley, T., & Oberley, L. (1997). Antioxidant enzyme levels in cancer. Histology and Histopathology, 12(2), 525–535.

    CAS  PubMed  Google Scholar 

  89. Tsai, S.-M., Hou, M.-F., Wu, S.-H., Hu, B.-W., Yang, S.-F., Chen, W.-T., et al. (2011). Expression of manganese superoxide dismutase in patients with breast cancer. The Kaohsiung Journal of Medical Sciences, 27(5), 167–172.

    Article  CAS  PubMed  Google Scholar 

  90. Hitchler, M. J., Oberley, L. W., & Domann, F. E. (2008). Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radical Biology and Medicine, 45(11), 1573–1580.

    Article  CAS  PubMed  Google Scholar 

  91. Srour, N., Reymond, M. A., & Steinert, R. (2008). Lost in translation? A systematic database of gene expression in breast cancer. Pathobiology, 75(2), 112–118.

    Article  CAS  PubMed  Google Scholar 

  92. DeRoo, E. P., Wrobleski, S. K., Shea, E. M., Al-Khalil, R. K., Hawley, A. E., Henke, P. K., et al. (2015). The role of galectin-3 and galectin-3–binding protein in venous thrombosis. Blood, 125(11), 1813–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ilmer, M., Mazurek, N., Gilcrease, M. Z., Byrd, J. C., Woodward, W. A., Buchholz, T. A., et al. (2016). Low expression of galectin-3 is associated with poor survival in node-positive breast cancers and mesenchymal phenotype in breast cancer stem cells. Breast Cancer Research, 18(1), 97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Escara-Wilke, J., Yeung, K., & Keller, E. T. (2012). Raf kinase inhibitor protein (RKIP) in cancer. Cancer and Metastasis Reviews, 31(3–4), 615–620.

    Article  CAS  PubMed  Google Scholar 

  95. Keller, E. T., Fu, Z., & Brennan, M. (2004). The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochemical Pharmacology, 68(6), 1049–1053.

    Article  CAS  PubMed  Google Scholar 

  96. Hagan, S., Al-Mulla, F., Mallon, E., Oien, K., Ferrier, R., Gusterson, B., et al. (2005). Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clinical Cancer Research, 11(20), 7392–7397.

    Article  CAS  PubMed  Google Scholar 

  97. Fu, Z., Kitagawa, Y., Shen, R., Shah, R., Mehra, R., Rhodes, D., et al. (2006). Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. The Prostate, 66(3), 248–256.

    Article  CAS  PubMed  Google Scholar 

  98. Luce, L. N., Abbate, M., Cotignola, J., & Giliberto, F. (2017). Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations. Oncotarget, 8(1), 145.

    Article  PubMed  Google Scholar 

  99. Sgambato, A., Migaldi, M., Montanari, M., Camerini, A., Brancaccio, A., Rossi, G., et al. (2003). Dystroglycan expression is frequently reduced in human breast and colon cancers and is associated with tumor progression. The American Journal of Pathology, 162(3), 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Henry, M. D., Cohen, M. B., & Campbell, K. P. (2001). Reduced expression of dystroglycan in breast and prostate cancer. Human Pathology, 32(8), 791–795.

    Article  CAS  PubMed  Google Scholar 

  101. Vizoso, F., Plaza, E., Vázquez, J., Serra, C., Lamelas, M. L., González, L. O., et al. (2001). Lysozyme expression by breast carcinomas, correlation with clinicopathologic parameters, and prognostic significance. Annals of Surgical Oncology, 8(8), 667–674.

    Article  CAS  PubMed  Google Scholar 

  102. Bresnick, A. R., Weber, D. J., & Zimmer, D. B. (2015). S100 proteins in cancer. Nature Reviews Cancer, 15(2), 96–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghavami, S., Rashedi, I., Dattilo, B. M., Eshraghi, M., Chazin, W. J., Hashemi, M., et al. (2008). S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. Journal of Leukocyte Biology, 83(6), 1484–1492.

    Article  CAS  PubMed  Google Scholar 

  104. Eatemadi, A., Aiyelabegan, H. T., Negahdari, B., Mazlomi, M. A., Daraee, H., Daraee, N., et al. (2017). Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomedicine & Pharmacotherapy, 86, 221–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our labs for the pleasant working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen F. Arcaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslebagh, R., Channaveerappa, D., Pentecost, B.T., Arcaro, K.F., Darie, C.C. (2019). Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_26

Download citation

Publish with us

Policies and ethics