Skip to main content

Immuno-Affinity Mass Spectrometry: A Novel Approaches with Biomedical Relevance

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Identifying antigen–antibody interactions have been shown as a critical step in understanding the proteins biological functions and their involvement in various pathological conditions. While many techniques have been developed to characterize antigen–antibody interactions, one strategy that has gained considerable momentum over the last decade for the identification and quantification of antigen–antibody interactions, is immune affinity-chromatography followed by mass spectrometry. Moreover, the combination of enzymatic digestion of antigens and mass spectrometric identification of specific binding peptide(s) to the corresponding anti-antigen antibody has become a versatile and clinical relevant method for mapping epitopes by mass spectrometry. In this chapter, the development and applications of novel immunoaffinity mass spectrometric methodologies for elucidating biomedical aspects will be presented. First, a simplified mass spectrometric approach that maps an epitope from a digested antigen solution without immobilizing the anti-antigen antibody on a solid support will be reported. iMALDI (from immunoaffinity and MALDI, matrix-assisted laser desorption/ionization), a technique that involves immunoaffinity capture of specific peptides and direct MALDI measurements was used for absolute quantification of serine/threonine-specific protein kinase (AKT) peptides from breast cancer and colon cancer cell lines and flash-frozen tumor lysates. The intact transition epitope mapping (ITEM) was shown as a rapid and accurate epitope mapping method by using Ion mobility mass spectrometry (IMS-MS) for analysing the antigen peptide-containing immune complex previously generated by in solution epitope extraction/excision procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. MAbs, 7(1), 9–14.

    CAS  PubMed  Google Scholar 

  2. Bruggemann, M., Osborn, M. J., Ma, B., Buelow, R., et al. (2017). Strategies to obtain diverse and specific human monoclonal antibodies from transgenic animals. Transplantation, 101(8), 1770–1776.

    PubMed  Google Scholar 

  3. Xia, Z. N., Cai, X. T., & Cao, P. (2012). Monoclonal antibody: The corner stone of modern biotherapeutics. Yao Xue Xue Bao, 47(10), 1275–1280.

    CAS  PubMed  Google Scholar 

  4. Opuni, K. F. M., Al-Majdoub, M., Yefremova, Y., El-Kased, R. F., Koy, C., Glocker, M. O., et al. (2018). Mass spectrometric epitope mapping. Mass Spectrometry Reviews, 37(2), 229–241.

    CAS  PubMed  Google Scholar 

  5. Kaur, H., & Salunke, D. M. (2015). Antibody promiscuity: Understanding the paradigm shift in antigen recognition. IUBMB Life, 67(7), 498–505.

    CAS  PubMed  Google Scholar 

  6. Sundberg, E. J. (2009). Structural basis of antibody-antigen interactions. Methods in Molecular Biology, 524, 23–36.

    CAS  PubMed  Google Scholar 

  7. Van Regenmortel, M. H. (2014). Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. Journal of Molecular Recognition, 27(11), 627–639.

    PubMed  Google Scholar 

  8. Hager-Braun, C., Hochleitner, E. O., Gorny, M. K., Zolla-Pazner, S., Bienstock, R. J., & Tomer, K. B. (2010). Characterization of a discontinuous epitope of the HIV envelope protein gp120 recognized by a human monoclonal antibody using chemical modification and mass spectrometric analysis. Journal of the American Society for Mass Spectrometry, 21(10), 1687–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim, Y., Zhong, J. H., & Zhou, X. F. (2015). Development of mature BDNF-specific sandwich ELISA. Journal of Neurochemistry, 134(1), 75–85.

    CAS  PubMed  Google Scholar 

  10. Lin, A. V. (2015). Indirect ELISA. Methods in Molecular Biology, 1318, 51–59.

    PubMed  Google Scholar 

  11. Carlyle, B. C., Trombetta, B. A., & Arnold, S. E. (2018). Proteomic approaches for the discovery of biofluid biomarkers of neurodegenerative dementias. Proteomes, 6(3), 32.

    CAS  PubMed Central  Google Scholar 

  12. Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15.

    CAS  PubMed  Google Scholar 

  13. Swiatly, A., Plewa, S., Matysiak, J., Kokot, Z. J., et al. (2018). Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. Journal of Ovarian Research, 11(1), 88.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulrich, M., Petre, A., Youhnovski, N., Promm, F., Schirle, M., Schumm, M., et al. (2008). Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. The Journal of Biological Chemistry, 283(42), 28629–28640.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiss, F., et al. (2014). Catch and measure-mass spectrometry-based immunoassays in biomarker research. Biochimica et Biophysica Acta, 1844(5), 927–932.

    CAS  PubMed  Google Scholar 

  16. Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W., Pearson, T. W., et al. (2004). Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). Journal of Proteome Research, 3(2), 235–244.

    CAS  PubMed  Google Scholar 

  17. Tian, X., Cecal, R., McLaurin, J., Manea, M., Stefanescu, R., Grau, S., et al. (2005). Identification and structural characterisation of carboxy-terminal polypeptides and antibody epitopes of Alzheimer’s amyloid precursor protein using high-resolution mass spectrometry. European Journal of Mass Spectrometry (Chichester, England), 11(5), 547–556.

    CAS  Google Scholar 

  18. Zhao, Y., Muir, T. W., Kent, S. B., Tischer, E., Scardina, J. M., Chait, B. T., et al. (1996). Mapping protein-protein interactions by affinity-directed mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4020–4024.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moise, A., Andre, S., Eggers, F., Krzeminski, M., Przybylski, M., Gabius, H. J., et al. (2011). Toward bioinspired galectin mimetics: Identification of ligand-contacting peptides by proteolytic-excision mass spectrometry. Journal of the American Chemical Society, 133(38), 14844–14847.

    CAS  PubMed  Google Scholar 

  20. Petre, B. A., Ulrich, M., Stumbaum, M., Bernevic, B., Moise, A., Doring, G., et al. (2012). When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. Journal of the American Society for Mass Spectrometry, 23(11), 1831–1840.

    CAS  PubMed  Google Scholar 

  21. Petre, B. A. (2008). Analytical development and biochemical application of mass spectrometry in combination with immunoaffinity methods for identification and structural characterisation of protein nitration. Dissertation. Retrieved from http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-85026

  22. Petre, B. A. (2014). Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes. Advances in Experimental Medicine and Biology, 806, 129–151.

    CAS  PubMed  Google Scholar 

  23. Kukacka, Z., Iurascu, M., Lupu, L., Rusche, H., Murphy, M., Altamore, L., et al. (2018). Antibody epitope of human alpha-galactosidase a revealed by affinity mass spectrometry: A basis for reversing immunoreactivity in enzyme replacement therapy of Fabry disease. ChemMedChem, 13(9), 909–915.

    CAS  PubMed  Google Scholar 

  24. Nelson, P. N., Reynolds, G. M., Waldron, E. E., Ward, E., Giannopoulos, K., Murray, P. G., et al. (2000). Monoclonal antibodies. Molecular Pathology, 53(3), 111–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazemi, M., & Finkelstein, R. A. (1991). Mapping epitopic regions of cholera toxin B-subunit protein. Molecular Immunology, 28(8), 865–876.

    CAS  PubMed  Google Scholar 

  26. Saint-Remy, J. M. (1997). Epitope mapping: A new method for biological evaluation and immunotoxicology. Toxicology, 119(1), 77–81.

    CAS  PubMed  Google Scholar 

  27. Juszczyk, P., Paraschiv, G., Szymanska, A., Kolodziejczyk, A. S., Rodziewicz-Motowidlo, S., Grzonka, Z., et al. (2009). Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. Journal of Medicinal Chemistry, 52(8), 2420–2428.

    CAS  PubMed  Google Scholar 

  28. Hochleitner, E. O., Gorny, M. K., Zolla-Pazner, S., Tomer, K. B., et al. (2000). Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. Journal of Immunology, 164(8), 4156–4161.

    CAS  Google Scholar 

  29. Tian, X., Maftei, M., Kohlmann, M., Allinquant, B., Przybylski, M., et al. (2007). Differential epitope identification of antibodies against intracellular domains of Alzheimer’s amyloid precursor protein using high resolution affinity-mass spectrometry. Sub-Cellular Biochemistry, 43, 339–354.

    PubMed  Google Scholar 

  30. Parker, C. E., & Tomer, K. B. (2002). MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Molecular Biotechnology, 20(1), 49–62.

    CAS  PubMed  Google Scholar 

  31. Pimenova, T., Meier, L., Roschitzki, B., Paraschiv, G., Przybylski, M., Zenobi, R., et al. (2009). Polystyrene beads as an alternative support material for epitope identification of a prion-antibody interaction using proteolytic excision-mass spectrometry. Analytical and Bioanalytical Chemistry, 395(5), 1395–1401.

    CAS  PubMed  Google Scholar 

  32. Ochs, R. L., Lischwe, M. A., Spohn, W. H., Busch, H., et al. (1985). Fibrillarin: A new protein of the nucleolus identified by autoimmune sera. Biology of the Cell, 54(2), 123–133.

    CAS  PubMed  Google Scholar 

  33. Tollervey, D., Lehtonen, H., Jansen, R., Kern, H., Hurt, E. C., et al. (1993). Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell, 72(3), 443–457.

    CAS  PubMed  Google Scholar 

  34. Feist, E., Egerer, K., & Burmester, G. R. (2007). Autoantibody profile in rheumatoid arthritis. Zeitschrift für Rheumatologie, 66(3), 212–214. 216–8.

    CAS  PubMed  Google Scholar 

  35. El-Kased, R. F., Koy, C., Deierling, T., Lorenz, P., Qian, Z., Li, Y., et al. (2009). Mass spectrometric and peptide chip epitope mapping of rheumatoid arthritis autoantigen RA33. European Journal of Mass Spectrometry (Chichester, England), 15(6), 747–759.

    CAS  Google Scholar 

  36. El-Kased, R. F., Koy, C., Lorenz, P., Montgomery, H., Tanaka, K., Thiesen, H.-J., et al. (2011). A novel mass spectrometric epitope mapping approach without immobilization of the antibody. Journal of Proteomics & Bioinformatics, 4, 001–009.

    CAS  Google Scholar 

  37. Shah, B., Reid, J. D., Kuzyk, M. A., Parker, C. E., Borchers, C. H., et al. (2013). Developing an iMALDI method. Methods in Molecular Biology, 1023, 97–120.

    CAS  PubMed  Google Scholar 

  38. Popp, R., Li, H., & Borchers, C. (2018). Immuno-MALDI (iMALDI) mass spectrometry for the analysis of proteins in signaling pathways. Expert Review of Proteomics, 15(9), 701–708.

    CAS  PubMed  Google Scholar 

  39. Petre, B. A., Youhnovski, N., Lukkari, J., Weber, R., Przybylski, M., et al. (2005). Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry (Chichester, England), 11(5), 513–518.

    CAS  Google Scholar 

  40. Kuzyk, M. A., Smith, D., Yang, J., Cross, T. J., Jackson, A. M., Hardie, D. B., et al. (2009). Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Molecular & Cellular Proteomics, 8(8), 1860–1877.

    CAS  Google Scholar 

  41. Popp, R., Basik, M., Spatz, A., Batist, G., Zahedi, R. P., Borchers, C. H., et al. (2018). How iMALDI can improve clinical diagnostics. Analyst, 143(10), 2197–2203.

    CAS  PubMed  Google Scholar 

  42. Jiang, J., Parker, C. E., Fuller, J. R., Kawula, T. H., Borchers, C. H., et al. (2007). Development of an immuno tandem mass spectrometry (iMALDI) assay for EGFR diagnosis. Proteomics. Clinical Applications, 1(12), 1651–1659.

    CAS  PubMed  Google Scholar 

  43. Sechi, L. A., Sechi, L. A., Novello, M., Colussi, G., Di Fabio, A., Chiuch, A., et al. (2008). Relationship of plasma renin with a prothrombotic state in hypertension: Relevance for organ damage. American Journal of Hypertension, 21(12), 1347–1353.

    CAS  PubMed  Google Scholar 

  44. Reid, J. D., Holmes, D. T., Mason, D. R., Shah, B., Borchers, C. H., et al. (2010). Towards the development of an immuno MALDI (iMALDI) mass spectrometry assay for the diagnosis of hypertension. Journal of the American Society for Mass Spectrometry, 21(10), 1680–1686.

    CAS  PubMed  Google Scholar 

  45. Camenzind, A. G., van der Gugten, J. G., Popp, R., Holmes, D. T., Borchers, C. H., et al. (2013). Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clinical Proteomics, 10(1), 20.

    PubMed  PubMed Central  Google Scholar 

  46. Popp, R., Malmstrom, D., Chambers, A. G., Lin, D., Camenzind, A. G., van der Gugten, J. G., et al. (2015). An automated assay for the clinical measurement of plasma renin activity by immuno-MALDI (iMALDI). Biochimica et Biophysica Acta, 1854(6), 547–558.

    CAS  PubMed  Google Scholar 

  47. Popp, R., Li, H., LeBlanc, A., Mohammed, Y., Aguilar-Mahecha, A., Chambers, A. G., et al. (2017). Immuno-matrix-assisted laser desorption/ionization assays for quantifying AKT1 and AKT2 in breast and colorectal cancer cell lines and tumors. Analytical Chemistry, 89(19), 10592–10600.

    CAS  PubMed  Google Scholar 

  48. Liu, P., Wang, Z., & Wei, W. (2014). Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle, 13(14), 2162–2164.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Humphreys, B. D., Cantaluppi, V., Portilla, D., Singbartl, K., Yang, L., Rosner, M. H., et al. (2016). Targeting endogenous repair pathways after AKI. Journal of the American Society of Nephrology, 27(4), 990–998.

    CAS  PubMed  Google Scholar 

  50. Sarbassov, D. D., Guertin, D. A., Ali, S. M., Sabatini, D. M., et al. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098–1101.

    CAS  PubMed  Google Scholar 

  51. Hyman, D. M., Smyth, L. M., Donoghue, M. T. A., Westin, S. N., Bedard, P. L., Dean, E. J., et al. (2017). AKT inhibition in solid tumors with AKT1 mutations. Journal of Clinical Oncology, 35(20), 2251–2259.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Q., Chen, X., & Hay, N. (2017). Akt as a target for cancer therapy: More is not always better (lessons from studies in mice). British Journal of Cancer, 117(2), 159–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Searle, E. J., Telfer, B. A., Mukherjee, D., Forster, D. M., Davies, B. R., Williams, K. J., et al. (2017). Akt inhibition improves long-term tumour control following radiotherapy by altering the microenvironment. EMBO Molecular Medicine, 9(12), 1646–1659.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yefremova, Y., Opuni, K. F. M., Danquah, B. D., Thiesen, H. J., Glocker, M. O., et al. (2017). Intact transition epitope mapping (ITEM). Journal of the American Society for Mass Spectrometry, 28(8), 1612–1622.

    CAS  PubMed  Google Scholar 

  55. Henderson, S. C., Valentine, S. J., Counterman, A. E., Clemmer, D. E., et al. (1999). ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Analytical Chemistry, 71(2), 291–301.

    CAS  PubMed  Google Scholar 

  56. Lanucara, F., Holman, S. W., Gray, C. J., Eyers, C. E., et al. (2014). The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chemistry, 6(4), 281–294.

    CAS  PubMed  Google Scholar 

  57. Kronvall, G. (1973). A surface component in group A, C, and G streptococci with non-immune reactivity for immunoglobulin G. Journal of Immunology, 111(5), 1401–1406.

    CAS  Google Scholar 

  58. Olsson, A., Eliasson, M., Guss, B., Nilsson, B., Hellman, U., Lindberg, M., et al. (1987). Structure and evolution of the repetitive gene encoding streptococcal protein G. European Journal of Biochemistry, 168(2), 319–324.

    CAS  PubMed  Google Scholar 

  59. Yefremova, Y., Al-Majdoub, M., Opuni, K. F., Koy, C., Cui, W., Yan, Y., et al. (2015). “De-novo” amino acid sequence elucidation of protein G’e by combined “top-down” and “bottom-up” mass spectrometry. Journal of the American Society for Mass Spectrometry, 26(3), 482–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Neta, P., Pu, Q. L., Kilpatrick, L., Yang, X., Stein, S. E., et al. (2007). Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Journal of the American Society for Mass Spectrometry, 18(1), 27–36.

    CAS  PubMed  Google Scholar 

  61. Akerstrom, B., & Bjorck, L. (1986). A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties. The Journal of Biological Chemistry, 261(22), 10240–10247.

    CAS  PubMed  Google Scholar 

  62. Sauer-Eriksson, A. E., Kleywegt, G. J., Uhlen, M., Jones, T. A., et al. (1995). Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure, 3(3), 265–278.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brînduşa Alina Petre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ion, L., Petre, B.A. (2019). Immuno-Affinity Mass Spectrometry: A Novel Approaches with Biomedical Relevance. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_21

Download citation

Publish with us

Policies and ethics