Skip to main content

Mass Spectrometry in Advancement of Redox Precision Medicine

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual—similar to the use of genomic sequencing—in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4-HDTE:

4-hydroxydodecatrienal

4-HHE:

4-hydroxy-2-hexenal

4-HNE:

4-hydroxy-2-nonenal

4-HNDE:

4-hydroxynondienal

8-oxo-dA:

8-oxo-2′-deoxyadenosine

8-oxo-dG:

8-oxo-2′-deoxyguanosine

AA:

Arachidonic acid

AhpC:

Alkyl hydroperoxide reductase subunit C

ALA:

Alpha-linolenic acid

APCI:

Atmospheric-pressure chemical ionization

BQB:

Bromoacetonylquinolinium bromide

CAT:

Catalase

CID:

Collision-induced dissociation

COX:

Cyclooxygenase

CYP450:

Cytochrome p450

Cys:

Cysteine

CySS:

Cystine

DCP-NEt2C:

DCP-NEt2-Coumarin

DHA:

Docosahexaenoic acid

DTT:

Dithiothreitol

E+:

Ethidium

EET:

Epoxyeicosatrienoic acid

ELISA:

Enzyme-linked immunosorbent assay

EPA:

Eicosapentaenoic acid

ESI:

Electrospray ionization

FEM:

N-(2-ferroceneethyl)maleimide

FMEA:

Ferrocenecarboxylic acid (2-maleimidoyl)ethylamide

FOX:

Ferrous oxidation of xylenol assay

GC:

Gas chromatography

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

Hb:

Hemoglobin

HCD:

High-energy collision-induced dissociation

Hcy:

Homocysteine

HE:

Hydroethidine

HETE:

Hydroxyeicosatetraenoic acid

HILIC:

Hydrophilic interaction chromatography

HMDB:

The Human Metabolome Database

HODE:

Hydroxyoctadecadienoic acid

HPLC:

High-performance liquid chromatography

HUVEC:

Human umbilical vein endothelial cells

IAA:

Iodoacetic acid

IAM:

Iodoacetamide

ICAT:

Isotope-coded affinity tag

IP:

Ion pair

IPCF:

Isopropylchlroformate

iTRAQ:

Isobaric tags for relative and absolute quantitation

LA:

Linoleic acid

LC:

Liquid chromatography

LDL:

Low-density lipoprotein

LLE:

Liquid-liquid extraction

LOOH:

Lipid hydroperoxide

LOX:

Lipoxygenase

M1dG:

3-(2-Deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine

MALDI:

Matrix assisted laser desorption/ionization

mBB:

Monobromobimane

MDA:

Malondialdehyde

MDMS-SL:

Multi-dimensional MS-based shotgun lipidomics

Met:

Methionine

MMTS:

Methyl ethanethiosulfonate

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MSTP:

4-(5-Methanesulfonyl-[1,2,3,4]tetrazol-1-yl)-phenol

NAD+:

Nicotinamide adenine dinucleotide

NADP+:

Nicotinamide adenine dinucleotide phosphate

NBenzM:

N-benzylmaleimide

NCycloM:

N-cyclohexylmaleimide

ND:

Not determined

NEM:

N-ethylmaleimide

PBMC:

Peripheral blood mononuclear cells

PC:

Phosphatidylcholine

PCA:

Perchloric acid

PE:

Phosphatidylethanolamine

Pro:

Proline

PRX:

Peroxiredoxin

PS:

Phosphatidylserine

PTGS:

Prostaglandin endoperoxide synthase

PUFA:

Polyunsaturated fatty acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RP:

Reversed-phase

SIM:

Selected ion monitoring

SOD:

Superoxide dismutase

SPE:

Solid-phase extraction

SSA:

5-Sulfosalicylic acid

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substance

TCA:

Trichloroacetic acid

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

TLC:

Thin-layer chromatography

TMT:

Tandem mass tag

TOF:

Time-of-flight

TRX:

Thioredoxin

Tyr:

Tyrosine

References

  1. Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506(7488), 307–315.

    Article  CAS  PubMed  Google Scholar 

  2. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry, 272(33), 20313–20316.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad, S., Khan, H., Shahab, U., Rehman, S., Rafi, Z., Khan, M. Y., et al. (2017). Protein oxidation: An overview of metabolism of sulphur containing amino acid, cysteine. Frontiers in Bioscience (Scholar Edition), 9, 71–87.

    Article  Google Scholar 

  4. Cecarini, V., Gee, J., Fioretti, E., Amici, M., Angeletti, M., Eleuteri, A. M., et al. (2007). Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochimica et Biophysica Acta, 1773(2), 93–104.

    Article  CAS  PubMed  Google Scholar 

  5. Niki, E. (2016). Oxidative stress and antioxidants: Distress or eustress? Archives of Biochemistry and Biophysics, 595, 19–24.

    Article  CAS  PubMed  Google Scholar 

  6. Sies, H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11, 613–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhee, S. G. (2006). H2O2, a necessary evil for cell signaling. Science, 312(5782), 1882–1883.

    Article  PubMed  Google Scholar 

  8. Reczek, C. R., & Chandel, N. S. (2015). ROS-dependent signal transduction. Current Opinion in Cell Biology, 33, 8–13.

    Article  CAS  PubMed  Google Scholar 

  9. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.

    Article  CAS  PubMed  Google Scholar 

  10. Devarie-Baez, N. O., Silva Lopez, E. I., & Furdui, C. M. (2016). Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radical Research, 50(2), 172–194.

    Article  CAS  PubMed  Google Scholar 

  11. Gupta, V., Paritala, H., & Carroll, K. S. (2016). Reactivity, selectivity, and stability in sulfenic acid detection: A comparative study of nucleophilic and electrophilic probes. Bioconjugate Chemistry, 27(5), 1411–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta, V., & Carroll, K. S. (2016). Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid. Chemical Science, 7(1), 400–415.

    Article  CAS  PubMed  Google Scholar 

  13. Winterbourn, C. C., & Hampton, M. B. (2008). Thiol chemistry and specificity in redox signaling. Free Radical Biology & Medicine, 45(5), 549–561.

    Article  CAS  Google Scholar 

  14. Poole, L. B., Karplus, P. A., & Claiborne, A. (2004). Protein sulfenic acids in redox signaling. Annual Review of Pharmacology and Toxicology, 44, 325–347.

    Article  CAS  PubMed  Google Scholar 

  15. Jonsson, T. J., Tsang, A. W., Lowther, W. T., & Furdui, C. M. (2008). Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin. The Journal of Biological Chemistry, 283(34), 22890–22894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Biteau, B., Labarre, J., & Toledano, M. B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature, 425(6961), 980–984.

    Article  CAS  PubMed  Google Scholar 

  17. Akter, S., Fu, L., Jung, Y., Conte, M. L., Lawson, J. R., Lowther, W. T., et al. (2018). Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nature Chemical Biology, 14(11), 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berndt, C., Lillig, C. H., & Flohe, L. (2014). Redox regulation by glutathione needs enzymes. Frontiers in Pharmacology, 5, 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Diaz, A., Loewen, P. C., Fita, I., & Carpena, X. (2012). Thirty years of heme catalases structural biology. Archives of Biochemistry and Biophysics, 525(2), 102–110.

    Article  CAS  PubMed  Google Scholar 

  20. Alfonso-Prieto, M., Vidossich, P., & Rovira, C. (2012). The reaction mechanisms of heme catalases: An atomistic view by ab initio molecular dynamics. Archives of Biochemistry and Biophysics, 525(2), 121–130.

    Article  CAS  PubMed  Google Scholar 

  21. Peskin, A. V., Low, F. M., Paton, L. N., Maghzal, G. J., Hampton, M. B., & Winterbourn, C. C. (2007). The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. The Journal of Biological Chemistry, 282(16), 11885–11892.

    Article  CAS  PubMed  Google Scholar 

  22. Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., & Karplus, P. A. (2015). Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 40(8), 435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berndt, C., Lillig, C. H., & Holmgren, A. (2007). Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: Implications for diseases in the cardiovascular system. American Journal of Physiology. Heart and Circulatory Physiology, 292(3), H1227–H1236.

    Article  CAS  PubMed  Google Scholar 

  24. Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology & Medicine, 95, 27–42.

    Article  CAS  Google Scholar 

  25. Jones, D. P. (2006). Redefining oxidative stress. Antioxidants & Redox Signaling, 8(9-10), 1865–1879.

    Article  CAS  Google Scholar 

  26. Brion, L. P., Bell, E. F., & Raghuveer, T. S. (2003). Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database of Systematic Reviews, (4), CD003665.

    Google Scholar 

  27. Fishbane, S., Durham, J. H., Marzo, K., & Rudnick, M. (2004). N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. Journal of the American Society of Nephrology, 15(2), 251–260.

    Article  CAS  PubMed  Google Scholar 

  28. Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Meyskens, F. L., Jr., Omenn, G. S., et al. (2004). The beta-carotene and retinol efficacy trial: Incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. Journal of the National Cancer Institute, 96(23), 1743–1750.

    Article  CAS  PubMed  Google Scholar 

  29. Lonn, E., Bosch, J., Yusuf, S., Sheridan, P., Pogue, J., Arnold, J. M., et al. (2005). Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA, 293(11), 1338–1347.

    Article  PubMed  Google Scholar 

  30. Omenn, G. S., Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Glass, A., et al. (1996). Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. Journal of the National Cancer Institute, 88(21), 1550–1559.

    Article  CAS  PubMed  Google Scholar 

  31. Khaw, K. T., Bingham, S., Welch, A., Luben, R., Wareham, N., Oakes, S., et al. (2001). Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: A prospective population study. European Prospective Investigation into Cancer and Nutrition. Lancet, 357(9257), 657–663.

    Article  CAS  PubMed  Google Scholar 

  32. Burr, M., Appleby, P., Key, T., & Thorogood, M. (2001). Plasma ascorbic acid and risk of heart disease and cancer. Lancet, 357(9274), 2135–2136.

    Article  CAS  PubMed  Google Scholar 

  33. Klein, E. A., Thompson, I. M., Jr., Tangen, C. M., Crowley, J. J., Lucia, M. S., Goodman, P. J., et al. (2011). Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 306(14), 1549–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giustarini, D., Dalle-Donne, I., Tsikas, D., & Rossi, R. (2009). Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Critical Reviews in Clinical Laboratory Sciences, 46(5-6), 241–281.

    Article  CAS  PubMed  Google Scholar 

  35. Jones, D. P., Mody, V. C., Jr., Carlson, J. L., Lynn, M. J., & Sternberg, P., Jr. (2002). Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radical Biology & Medicine, 33(9), 1290–1300.

    Article  CAS  Google Scholar 

  36. Samiec, P. S., Drews-Botsch, C., Flagg, E. W., Kurtz, J. C., Sternberg, P., Jr., Reed, R. L., et al. (1998). Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. Free Radical Biology & Medicine, 24(5), 699–704.

    Article  CAS  Google Scholar 

  37. Ashfaq, S., Abramson, J. L., Jones, D. P., Rhodes, S. D., Weintraub, W. S., Hooper, W. C., et al. (2006). The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. Journal of the American College of Cardiology, 47(5), 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  38. Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502–522.

    Article  CAS  PubMed  Google Scholar 

  39. Gutscher, M., Pauleau, A. L., Marty, L., Brach, T., Wabnitz, G. H., Samstag, Y., et al. (2008). Real-time imaging of the intracellular glutathione redox potential. Nature Methods, 5(6), 553–559.

    Article  CAS  PubMed  Google Scholar 

  40. Rossi, R., Milzani, A., Dalle-Donne, I., Giustarini, D., Lusini, L., Colombo, R., et al. (2002). Blood glutathione disulfide: In vivo factor or in vitro artifact? Clinical Chemistry, 48(5), 742–753.

    Article  CAS  PubMed  Google Scholar 

  41. Giustarini, D., Tsikas, D., Colombo, G., Milzani, A., Dalle-Donne, I., Fanti, P., et al. (2016). Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1019, 21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giustarini, D., Dalle-Donne, I., Colombo, R., Milzani, A., & Rossi, R. (2004). Interference of plasmatic reduced glutathione and hemolysis on glutathione disulfide levels in human blood. Free Radical Research, 38(10), 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  43. Jones, D. P., Carlson, J. L., Samiec, P. S., Sternberg, P., Jr., Mody, V. C., Jr., Reed, R. L., et al. (1998). Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clinica Chimica Acta, 275(2), 175–184.

    Article  CAS  Google Scholar 

  44. Jones, D. P., & Liang, Y. (2009). Measuring the poise of thiol/disulfide couples in vivo. Free Radical Biology & Medicine, 47(10), 1329–1338.

    Article  CAS  Google Scholar 

  45. Lash, L. H., & Jones, D. P. (1985). Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Archives of Biochemistry and Biophysics, 240(2), 583–592.

    Article  CAS  PubMed  Google Scholar 

  46. Sutton, T. R., Minnion, M., Barbarino, F., Koster, G., Fernandez, B. O., Cumpstey, A. F., et al. (2018). A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biology, 16, 359–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giustarini, D., Dalle-Donne, I., Milzani, A., Fanti, P., & Rossi, R. (2013). Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nature Protocols, 8(9), 1660–1669.

    Article  CAS  PubMed  Google Scholar 

  48. D’Agostino, L. A., Lam, K. P., Lee, R., & Britz-McKibbin, P. (2011). Comprehensive plasma thiol redox status determination for metabolomics. Journal of Proteome Research, 10(2), 592–603.

    Article  PubMed  CAS  Google Scholar 

  49. Lee, S. G., Yim, J., Lim, Y., & Kim, J. H. (2016). Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1019, 45–50.

    Article  CAS  PubMed  Google Scholar 

  50. Cao, L., Waldon, D., Teffera, Y., Roberts, J., Wells, M., Langley, M., et al. (2013). Ratios of biliary glutathione disulfide (GSSG) to glutathione (GSH): A potential index to screen drug-induced hepatic oxidative stress in rats and mice. Analytical and Bioanalytical Chemistry, 405(8), 2635–2642.

    Article  CAS  PubMed  Google Scholar 

  51. Steghens, J. P., Flourie, F., Arab, K., & Collombel, C. (2003). Fast liquid chromatography-mass spectrometry glutathione measurement in whole blood: Micromolar GSSG is a sample preparation artifact. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 798(2), 343–349.

    Article  CAS  PubMed  Google Scholar 

  52. Squellerio, I., Caruso, D., Porro, B., Veglia, F., Tremoli, E., & Cavalca, V. (2012). Direct glutathione quantification in human blood by LC-MS/MS: Comparison with HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 71, 111–118.

    Article  CAS  PubMed  Google Scholar 

  53. Huang, Y. Q., Ruan, G. D., Liu, J. Q., Gao, Q., & Feng, Y. Q. (2011). Use of isotope differential derivatization for simultaneous determination of thiols and oxidized thiols by liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 416(2), 159–166.

    Article  CAS  PubMed  Google Scholar 

  54. Norris, R. L., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A., et al. (2012). A stable-isotope HPLC-MS/MS method to simplify storage of human whole blood samples for glutathione assay. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 898, 136–140.

    Article  CAS  PubMed  Google Scholar 

  55. Stempak, D., Dallas, S., Klein, J., Bendayan, R., Koren, G., & Baruchel, S. (2001). Glutathione stability in whole blood: Effects of various deproteinizing acids. Therapeutic Drug Monitoring, 23(5), 542–549.

    Article  CAS  PubMed  Google Scholar 

  56. Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vazquez-Fresno, R., et al. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–DD17.

    Article  CAS  PubMed  Google Scholar 

  57. Tsikas, D., Hanff, E., Kayacelebi, A. A., & Bohmer, A. (2016). Gas chromatographic-mass spectrometric analysis of the tripeptide glutathione in the electron-capture negative-ion chemical ionization mode. Amino Acids, 48(2), 593–598.

    Article  CAS  PubMed  Google Scholar 

  58. Lyons, J., Rauh-Pfeiffer, A., Yu, Y. M., Lu, X. M., Zurakowski, D., Tompkins, R. G., et al. (2000). Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5071–5076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Capitan, P., Malmezat, T., Breuille, D., & Obled, C. (1999). Gas chromatographic-mass spectrometric analysis of stable isotopes of cysteine and glutathione in biological samples. Journal of Chromatography. B, Biomedical Sciences and Applications, 732(1), 127–135.

    Article  CAS  PubMed  Google Scholar 

  60. Kuster, A., Tea, I., Sweeten, S., Roze, J. C., Robins, R. J., & Darmaun, D. (2008). Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 390(5), 1403–1412.

    Article  PubMed  CAS  Google Scholar 

  61. Humbert, B., Nguyen, P., Obled, C., Bobin, C., Vaslin, A., Sweeten, S., et al. (2001). Use of L-15N glutamic acid and homoglutathione to determine both glutathione synthesis and concentration by gas chromatography-mass spectrometry (GCMS). Journal of Mass Spectrometry, 36(7), 726–735.

    Article  CAS  PubMed  Google Scholar 

  62. Tea, I., Ferchaud-Roucher, V., Kuster, A., Darmaun, D., & Robins, R. J. (2007). Determination of 13C isotopic enrichment of glutathione and glycine by gas chromatography/combustion/isotope ratio mass spectrometry after formation of the N- or N,S-ethoxycarbonyl methyl ester derivatives. Rapid Communications in Mass Spectrometry, 21(20), 3245–3252.

    Article  CAS  PubMed  Google Scholar 

  63. He, T., Quinn, D., Fu, E., & Wang, Y. K. (1999). Analysis of diagnostic metabolites by capillary electrophoresis-mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 727(1-2), 43–52.

    Article  CAS  PubMed  Google Scholar 

  64. Gong, Z. H., Tian, G. L., Huang, Q. W., Wang, Y. M., & Xu, H. P. (2017). Reduced glutathione and glutathione disulfide in the blood of glucose-6-phosphate dehydrogenase-deficient newborns. BMC Pediatrics, 17(1), 172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nazari, M., Bokhart, M. T., Loziuk, P. L., & Muddiman, D. C. (2018). Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst, 143(3), 654–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moore, T., Le, A., Niemi, A. K., Kwan, T., Cusmano-Ozog, K., Enns, G. M., et al. (2013). A new LC-MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 929, 51–55.

    Article  CAS  PubMed  Google Scholar 

  67. Suh, J. H., Kim, R., Yavuz, B., Lee, D., Lal, A., Ames, B. N., et al. (2009). Clinical assay of four thiol amino acid redox couples by LC-MS/MS: Utility in thalassemia. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(28), 3418–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reinbold, J., Koehler, P., & Rychlik, M. (2014). Quantitation of glutathione and its oxidation products in erythrocytes by multiple-label stable-isotope dilution. Analytical Biochemistry, 445, 41–48.

    Article  CAS  PubMed  Google Scholar 

  69. Fahrenholz, T., Wolle, M. M., Kingston, H. M., Faber, S., Kern, J. C., II, Pamuku, M., et al. (2015). Molecular speciated isotope dilution mass spectrometric methods for accurate, reproducible and direct quantification of reduced, oxidized and total glutathione in biological samples. Analytical Chemistry, 87(2), 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  70. Harwood, D. T., Kettle, A. J., Brennan, S., & Winterbourn, C. C. (2009). Simultaneous determination of reduced glutathione, glutathione disulphide and glutathione sulphonamide in cells and physiological fluids by isotope dilution liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(28), 3393–3399.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, Z., Liang, Q., Luo, G., Hu, P., Li, P., & Wang, Y. (2009). HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: Application to studies of diabetic nephropathy. Talanta, 77(4), 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  72. Camera, E., Rinaldi, M., Briganti, S., Picardo, M., & Fanali, S. (2001). Simultaneous determination of reduced and oxidized glutathione in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 757(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  73. Seiwert, B., & Karst, U. (2007). Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides. Analytical Chemistry, 79(18), 7131–7138.

    Article  CAS  PubMed  Google Scholar 

  74. Robin, S., Leveque, N., Courderot-Masuyer, C., & Humbert, P. (2011). LC-MS determination of oxidized and reduced glutathione in human dermis: A microdialysis study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879(30), 3599–3606.

    Article  CAS  PubMed  Google Scholar 

  75. Iwasaki, Y., Nakano, Y., Mochizuki, K., Ogawa, T., Oda, M., Ito, R., et al. (2011). Quantification of reduced and oxidized thiols in mouse serum by column-switching hydrophilic interaction chromatography coupled with mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 56(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  76. Bouligand, J., Deroussent, A., Paci, A., Morizet, J., & Vassal, G. (2006). Liquid chromatography-tandem mass spectrometry assay of reduced and oxidized glutathione and main precursors in mice liver. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 832(1), 67–74.

    Article  CAS  PubMed  Google Scholar 

  77. Norris, R. L., Eaglesham, G. K., Shaw, G. R., Smith, M. J., Chiswell, R. K., Seawright, A. A., et al. (2001). A sensitive and specific assay for glutathione with potential application to glutathione disulphide, using high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 762(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, F., Bartels, M. J., Geter, D. R., Jeong, Y. C., Schisler, M. R., Wood, A. J., et al. (2008). Quantitation of glutathione by liquid chromatography/positive electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 22(22), 3608–3614.

    Article  CAS  PubMed  Google Scholar 

  79. Loughlin, A. F., Skiles, G. L., Alberts, D. W., & Schaefer, W. H. (2001). An ion exchange liquid chromatography/mass spectrometry method for the determination of reduced and oxidized glutathione and glutathione conjugates in hepatocytes. Journal of Pharmaceutical and Biomedical Analysis, 26(1), 131–142.

    Article  CAS  PubMed  Google Scholar 

  80. Guan, X., Hoffman, B., Dwivedi, C., & Matthees, D. P. (2003). A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 31(2), 251–261.

    Article  CAS  PubMed  Google Scholar 

  81. Banerjee, R. (2017). Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Current Opinion in Chemical Biology, 37, 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cuevasanta, E., Moller, M. N., & Alvarez, B. (2017). Biological chemistry of hydrogen sulfide and persulfides. Archives of Biochemistry and Biophysics, 617, 9–25.

    Article  CAS  PubMed  Google Scholar 

  83. Klomsiri, C., Karplus, P. A., & Poole, L. B. (2011). Cysteine-based redox switches in enzymes. Antioxidants & Redox Signaling, 14(6), 1065–1077.

    Article  CAS  Google Scholar 

  84. Poole, L. B. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology & Medicine, 80, 148–157.

    Article  CAS  Google Scholar 

  85. Jacob, N., Bruckert, E., Giral, P., Foglietti, M. J., & Turpin, G. (1999). Cysteine is a cardiovascular risk factor in hyperlipidemic patients. Atherosclerosis, 146(1), 53–59.

    Article  CAS  PubMed  Google Scholar 

  86. Ozkan, Y., Ozkan, E., & Simsek, B. (2002). Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. International Journal of Cardiology, 82(3), 269–277.

    Article  PubMed  Google Scholar 

  87. Go, Y. M., & Jones, D. P. (2017). Redox theory of aging: Implications for health and disease. Clinical Science (London, England), 131(14), 1669–1688.

    Article  CAS  Google Scholar 

  88. Go, Y. M., & Jones, D. P. (2011). Cysteine/cystine redox signaling in cardiovascular disease. Free Radical Biology & Medicine, 50(4), 495–509.

    Article  CAS  Google Scholar 

  89. Patel, R. S., Ghasemzadeh, N., Eapen, D. J., Sher, S., Arshad, S., Ko, Y. A., et al. (2016). Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation, 133(4), 361–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wear, J. E., & Keevil, B. G. (2005). Measurement of cystine in urine by liquid chromatography-tandem mass spectrometry. Clinical Chemistry, 51(4), 787–789.

    Article  CAS  PubMed  Google Scholar 

  91. Johnson, J. M., Strobel, F. H., Reed, M., Pohl, J., & Jones, D. P. (2008). A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clinica Chimica Acta, 396(1-2), 43–48.

    Article  CAS  Google Scholar 

  92. Rafii, M., Elango, R., Courtney-Martin, G., House, J. D., Fisher, L., & Pencharz, P. B. (2007). High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography-electrospray tandem mass spectrometry. Analytical Biochemistry, 371(1), 71–81.

    Article  CAS  PubMed  Google Scholar 

  93. Weaving, G., Rocks, B. F., Iversen, S. A., & Titheradge, M. A. (2006). Simultaneous quantitation of homocysteine, cysteine and methionine in plasma and urine by liquid chromatography-tandem mass spectrometry. Annals of Clinical Biochemistry, 43(Pt 6), 474–480.

    Article  CAS  PubMed  Google Scholar 

  94. Myung, S. W., Kim, M., Min, H. K., Yoo, E. A., & Kim, K. R. (1999). Determination of homocysteine and its related compounds by solid-phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 727(1-2), 1–8.

    Article  CAS  PubMed  Google Scholar 

  95. Lafaye, A., Labarre, J., Tabet, J. C., Ezan, E., & Junot, C. (2005). Liquid chromatography-mass spectrometry and 15N metabolic labeling for quantitative metabolic profiling. Analytical Chemistry, 77(7), 2026–2033.

    Article  CAS  PubMed  Google Scholar 

  96. Ortmayr, K., Schwaiger, M., Hann, S., & Koellensperger, G. (2015). An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst, 140(22), 7687–7695.

    Article  CAS  PubMed  Google Scholar 

  97. Berger, F., Ramirez-Hernandez, M. H., & Ziegler, M. (2004). The new life of a centenarian: Signalling functions of NAD(P). Trends in Biochemical Sciences, 29(3), 111–118.

    Article  CAS  PubMed  Google Scholar 

  98. Belenky, P., Bogan, K. L., & Brenner, C. (2007). NAD+ metabolism in health and disease. Trends in Biochemical Sciences, 32(1), 12–19.

    Article  CAS  PubMed  Google Scholar 

  99. Houtkooper, R. H., Canto, C., Wanders, R. J., & Auwerx, J. (2010). The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocrine Reviews, 31(2), 194–223.

    Article  CAS  PubMed  Google Scholar 

  100. Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants & Redox Signaling, 10(2), 179–206.

    Article  CAS  Google Scholar 

  101. Kirkman, H. N., Rolfo, M., Ferraris, A. M., & Gaetani, G. F. (1999). Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. The Journal of Biological Chemistry, 274(20), 13908–13914.

    Article  CAS  PubMed  Google Scholar 

  102. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313.

    Article  CAS  PubMed  Google Scholar 

  103. Ushio-Fukai, M. (2006). Localizing NADPH oxidase-derived ROS. Science's STKE, 2006(349), re8.

    Article  PubMed  Google Scholar 

  104. Ido, Y. (2007). Pyridine nucleotide redox abnormalities in diabetes. Antioxidants & Redox Signaling, 9(7), 931–942.

    Article  CAS  Google Scholar 

  105. Verdin, E. (2015). NAD+ in aging, metabolism, and neurodegeneration. Science, 350(6265), 1208–1213.

    Article  CAS  PubMed  Google Scholar 

  106. Lin, S. J., & Guarente, L. (2003). Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Current Opinion in Cell Biology, 15(2), 241–246.

    Article  CAS  PubMed  Google Scholar 

  107. Blacker, T. S., & Duchen, M. R. (2016). Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology & Medicine, 100, 53–65.

    Article  CAS  Google Scholar 

  108. Zhao, Y., Jin, J., Hu, Q., Zhou, H. M., Yi, J., Yu, Z., et al. (2011). Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metabolism, 14(4), 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hung, Y. P., Albeck, J. G., Tantama, M., & Yellen, G. (2011). Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metabolism, 14(4), 545–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gowda, G. A. N. (2018). Profiling redox and energy coenzymes in whole blood, tissue and cells using NMR spectroscopy. Metabolites, 8(2).

    Article  PubMed Central  CAS  Google Scholar 

  111. Nagana Gowda, G. A., Abell, L., Lee, C. F., Tian, R., & Raftery, D. (2016). Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo 1H NMR spectroscopy. Analytical Chemistry, 88(9), 4817–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ogasawara, Y., Funakoshi, M., & Ishii, K. (2009). Determination of reduced nicotinamide adenine dinucleotide phosphate concentration using high-performance liquid chromatography with fluorescence detection: Ratio of the reduced form as a biomarker of oxidative stress. Biological & Pharmaceutical Bulletin, 32(11), 1819–1823.

    Article  CAS  Google Scholar 

  113. Sporty, J. L., Kabir, M. M., Turteltaub, K. W., Ognibene, T., Lin, S. J., & Bench, G. (2008). Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae. Journal of Separation Science, 31(18), 3202–3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshino, J., & Imai, S. (2013). Accurate measurement of nicotinamide adenine dinucleotide (NAD+) with high-performance liquid chromatography. Methods in Molecular Biology, 1077, 203–215.

    Article  CAS  PubMed  Google Scholar 

  115. Caruso, R., Campolo, J., Dellanoce, C., Mariele, R., Parodi, O., & Accinni, R. (2004). Critical study of preanalytical and analytical phases of adenine and pyridine nucleotide assay in human whole blood. Analytical Biochemistry, 330(1), 43–51.

    Article  CAS  PubMed  Google Scholar 

  116. Palfi, M., Halasz, A. S., Tabi, T., Magyar, K., & Szoko, E. (2004). Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase. Analytical Biochemistry, 326(1), 69–77.

    Article  CAS  PubMed  Google Scholar 

  117. Lowry, O. H., Passonneau, J. V., Schulz, D. W., & Rock, M. K. (1961). The measurement of pyridine nucleotides by enzymatic cycling. The Journal of Biological Chemistry, 236, 2746–2755.

    Article  CAS  PubMed  Google Scholar 

  118. Graeff R, Lee HC. A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. The Biochemical Journal 2002;361(Pt 2):379-384.

    Article  CAS  PubMed Central  Google Scholar 

  119. Vidugiriene, J., Leippe, D., Sobol, M., Vidugiris, G., Zhou, W., Meisenheimer, P., et al. (2014). Bioluminescent cell-based NAD(P)/NAD(P)H assays for rapid dinucleotide measurement and inhibitor screening. Assay and Drug Development Technologies, 12(9-10), 514–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wagner TC, Scott MD. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes. Analytical Biochemistry 1994;222(2):417-426.

    Article  CAS  PubMed  Google Scholar 

  121. Somogyi, A. H. G., Csala, M., & Tóth, B. (2016). Analytical approaches for the quantitation of redox-active pyridine dinucleotides in biological matrices. Periodica Polytechnica, Chemical Engineering, 60(4), 218–230.

    Article  CAS  Google Scholar 

  122. Lu, W., Wang, L., Chen, L., Hui, S., & Rabinowitz, J. D. (2018). Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors. Antioxidants & Redox Signaling, 28(3), 167–179.

    Article  CAS  Google Scholar 

  123. Bennette, N. B., Eng, J. F., & Dismukes, G. C. (2011). An LC-MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Analytical Chemistry, 83(10), 3808–3816.

    Article  CAS  PubMed  Google Scholar 

  124. Michopoulos, F., Whalley, N., Theodoridis, G., Wilson, I. D., Dunkley, T. P., & Critchlow, S. E. (2014). Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: Applications to serum, urine and tissue extracts. Journal of Chromatography. A, 1349, 60–68.

    Article  CAS  PubMed  Google Scholar 

  125. Hofmann, D., Wirtz, A., Santiago-Schubel, B., Disko, U., & Pohl, M. (2010). Structure elucidation of the thermal degradation products of the nucleotide cofactors NADH and NADPH by nano-ESI-FTICR-MS and HPLC-MS. Analytical and Bioanalytical Chemistry, 398(7-8), 2803–2811.

    Article  CAS  PubMed  Google Scholar 

  126. Wu, J. T., Wu, L. H., & Knight, J. A. (1986). Stability of NADPH: Effect of various factors on the kinetics of degradation. Clinical Chemistry, 32(2), 314–319.

    Article  CAS  PubMed  Google Scholar 

  127. Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007). Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Journal of Chromatography. A, 1147(2), 153–164.

    Article  CAS  PubMed  Google Scholar 

  128. Bajad, S. U., Lu, W., Kimball, E. H., Yuan, J., Peterson, C., & Rabinowitz, J. D. (2006). Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1125(1), 76–88.

    Article  CAS  PubMed  Google Scholar 

  129. Uehara, T., Yokoi, A., Aoshima, K., Tanaka, S., Kadowaki, T., Tanaka, M., et al. (2009). Quantitative phosphorus metabolomics using nanoflow liquid chromatography-tandem mass spectrometry and culture-derived comprehensive global internal standards. Analytical Chemistry, 81(10), 3836–3842.

    Article  CAS  PubMed  Google Scholar 

  130. Buescher, J. M., Moco, S., Sauer, U., & Zamboni, N. (2010). Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Analytical Chemistry, 82(11), 4403–4412.

    Article  CAS  PubMed  Google Scholar 

  131. Yang, S., Sadilek, M., & Lidstrom, M. E. (2010). Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria. Journal of Chromatography. A, 1217(47), 7401–7410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Park, J. O., Rubin, S. A., Xu, Y. F., Amador-Noguez, D., Fan, J., Shlomi, T., et al. (2016). Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nature Chemical Biology, 12(7), 482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., & Rabinowitz, J. D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chemical Biology, 5(8), 593–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Seifar, R. M., Ras, C., Deshmukh, A. T., Bekers, K. M., Suarez-Mendez, C. A., da Cruz, A. L., et al. (2013). Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography. A, 1311, 115–120.

    Article  CAS  PubMed  Google Scholar 

  135. Trammell, S. A., & Brenner, C. (2013). Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Computational and Structural Biotechnology Journal, 4, e201301012.

    Google Scholar 

  136. Evans, C., Bogan, K. L., Song, P., Burant, C. F., Kennedy, R. T., & Brenner, C. (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: Evidence for different mechanisms of longevity. BMC Chemical Biology, 10, 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ortmayr, K., Nocon, J., Gasser, B., Mattanovich, D., Hann, S., & Koellensperger, G. (2014). Sample preparation workflow for the liquid chromatography tandem mass spectrometry based analysis of nicotinamide adenine dinucleotide phosphate cofactors in yeast. Journal of Separation Science, 37(16), 2185–2191.

    Article  CAS  PubMed  Google Scholar 

  138. Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B., & Rabinowitz, J. D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 510(7504), 298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lewis, C. A., Parker, S. J., Fiske, B. P., McCloskey, D., Gui, D. Y., Green, C. R., et al. (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular Cell, 55(2), 253–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamada, K., Hara, N., Shibata, T., Osago, H., & Tsuchiya, M. (2006). The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 352(2), 282–285.

    Article  CAS  PubMed  Google Scholar 

  141. Myint, K. T., Uehara, T., Aoshima, K., & Oda, Y. (2009). Polar anionic metabolome analysis by nano-LC/MS with a metal chelating agent. Analytical Chemistry, 81(18), 7766–7772.

    Article  CAS  PubMed  Google Scholar 

  142. Cordell, R. L., Hill, S. J., Ortori, C. A., & Barrett, D. A. (2008). Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 871(1), 115–124.

    Article  CAS  PubMed  Google Scholar 

  143. Klawitter, J., Schmitz, V., Klawitter, J., Leibfritz, D., & Christians, U. (2007). Development and validation of an assay for the quantification of 11 nucleotides using LC/LC-electrospray ionization-MS. Analytical Biochemistry, 365(2), 230–239.

    Article  CAS  PubMed  Google Scholar 

  144. Trammell, S. A., Schmidt, M. S., Weidemann, B. J., Redpath, P., Jaksch, F., Dellinger, R. W., et al. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature Communications, 7, 12948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, L., Cui, Z., Deng, Y., Dean, B., Hop, C. E., & Liang, X. (2016). Surrogate analyte approach for quantitation of endogenous NAD+ in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1011, 69–76.

    Article  CAS  PubMed  Google Scholar 

  146. Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K., & Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2876–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Milne, G. L., Dai, Q., & Roberts, L. J., II. (2015). The isoprostanes—25 years later. Biochimica et Biophysica Acta, 1851(4), 433–445.

    Article  CAS  PubMed  Google Scholar 

  148. Milne, G. L., Yin, H., Hardy, K. D., Davies, S. S., & Roberts, L. J., II. (2011). Isoprostane generation and function. Chemical Reviews, 111(10), 5973–5996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roberts, L. J., & Morrow, J. D. (2000). Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology & Medicine, 28(4), 505–513.

    Article  CAS  Google Scholar 

  150. Lawson, J. A., Rokach, J., & FitzGerald, G. A. (1999). Isoprostanes: Formation, analysis and use as indices of lipid peroxidation in vivo. The Journal of Biological Chemistry, 274(35), 24441–24444.

    Article  CAS  PubMed  Google Scholar 

  151. van’t Erve, T. J., Kadiiska, M. B., London, S. J., & Mason, R. P. (2017). Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biology, 12, 582–599.

    Article  CAS  Google Scholar 

  152. Czerska, M., Zielinski, M., & Gromadzinska, J. (2016). Isoprostanes - a novel major group of oxidative stress markers. International Journal of Occupational Medicine and Environmental Health, 29(2), 179–190.

    Article  PubMed  Google Scholar 

  153. Cracowski, J. L., Durand, T., & Bessard, G. (2002). Isoprostanes as a biomarker of lipid peroxidation in humans: Physiology, pharmacology and clinical implications. Trends in Pharmacological Sciences, 23(8), 360–366.

    Article  CAS  PubMed  Google Scholar 

  154. Kadiiska, M. B., Gladen, B. C., Baird, D. D., Germolec, D., Graham, L. B., Parker, C. E., et al. (2005). Biomarkers of oxidative stress study II: Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology & Medicine, 38(6), 698–710.

    Article  CAS  Google Scholar 

  155. Ting, H. J., & Khasawneh, F. T. (2010). Platelet function and Isoprostane biology. Should isoprostanes be the newest member of the orphan-ligand family? Journal of Biomedical Science, 17(1), 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Longmire, A. W., Roberts, L. J., & Morrow, J. D. (1994). Actions of the E2-isoprostane, 8-ISO-PGE2, on the platelet thromboxane/endoperoxide receptor in humans and rats: Additional evidence for the existence of a unique isoprostane receptor. Prostaglandins, 48(4), 247–256.

    Article  CAS  PubMed  Google Scholar 

  157. Morrow, J. D., Harris, T. M., & Roberts, L. J., II. (1990). Noncyclooxygenase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids. Analytical Biochemistry, 184(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  158. Klein, T., Reutter, F., Schweer, H., Seyberth, H. W., & Nusing, R. M. (1997). Generation of the isoprostane 8-epi-prostaglandin F2alpha in vitro and in vivo via the cyclooxygenases. The Journal of Pharmacology and Experimental Therapeutics, 282(3), 1658–1665.

    CAS  PubMed  Google Scholar 

  159. Pratico, D., & FitzGerald, G. A. (1996). Generation of 8-epiprostaglandin F2alpha by human monocytes. Discriminate production by reactive oxygen species and prostaglandin endoperoxide synthase-2. The Journal of Biological Chemistry, 271(15), 8919–8924.

    Article  CAS  PubMed  Google Scholar 

  160. Pratico, D., Lawson, J. A., & FitzGerald, G. A. (1995). Cyclooxygenase-dependent formation of the isoprostane, 8-epi prostaglandin F2 alpha. The Journal of Biological Chemistry, 270(17), 9800–9808.

    Article  CAS  PubMed  Google Scholar 

  161. van’t Erve, T. J., Lih, F. B., Kadiiska, M. B., Deterding, L. J., Eling, T. E., & Mason, R. P. (2015). Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2alpha)/PGF(2alpha) ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radical Biology & Medicine, 83, 245–251.

    Article  CAS  Google Scholar 

  162. Sasaki, D. M., Yuan, Y., Gikas, K., Kanai, K., Taber, D., Morrow, J. D., et al. (2002). Enzyme immunoassays for 15-F2T isoprostane-M, an urinary biomarker for oxidant stress. Advances in Experimental Medicine and Biology, 507, 537–541.

    Article  CAS  PubMed  Google Scholar 

  163. Basu, S. (1998). Radioimmunoassay of 8-iso-prostaglandin F2alpha: An index for oxidative injury via free radical catalysed lipid peroxidation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58(4), 319–325.

    Article  CAS  PubMed  Google Scholar 

  164. Klawitter, J., Haschke, M., Shokati, T., Klawitter, J., & Christians, U. (2011). Quantification of 15-F2t-isoprostane in human plasma and urine: Results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared. Rapid Communications in Mass Spectrometry, 25(4), 463–468.

    Article  CAS  PubMed  Google Scholar 

  165. Il’yasova, D., Morrow, J. D., Ivanova, A., & Wagenknecht, L. E. (2004). Epidemiological marker for oxidant status: Comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Annals of Epidemiology, 14(10), 793–797.

    Article  PubMed  Google Scholar 

  166. Bessard, J., Cracowski, J. L., Stanke-Labesque, F., & Bessard, G. (2001). Determination of isoprostaglandin F2alpha type III in human urine by gas chromatography-electronic impact mass spectrometry. Comparison with enzyme immunoassay. Journal of Chromatography. B, Biomedical Sciences and Applications, 754(2), 333–343.

    Article  CAS  PubMed  Google Scholar 

  167. Milne, G. L., Sanchez, S. C., Musiek, E. S., & Morrow, J. D. (2007). Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nature Protocols, 2(1), 221–226.

    Article  CAS  PubMed  Google Scholar 

  168. Milne, G. L., Gao, B., Terry, E. S., Zackert, W. E., & Sanchez, S. C. (2013). Measurement of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radical Biology & Medicine, 59, 36–44.

    Article  CAS  Google Scholar 

  169. Liu, W., Morrow, J. D., & Yin, H. (2009). Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radical Biology & Medicine, 47(8), 1101–1107.

    Article  CAS  Google Scholar 

  170. Chu, K. O., Wang, C. C., Rogers, M. S., & Pang, C. P. (2003). Quantifying F2-isoprostanes in umbilical cord blood of newborn by gas chromatography-mass spectrometry. Analytical Biochemistry, 316(1), 111–117.

    Article  CAS  PubMed  Google Scholar 

  171. Ferretti, A., & Flanagan, V. P. (1997). Isolation and measurement of urinary 8-iso-prostaglandin F2alpha by high-performance liquid chromatography and gas chromatography-mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 694(2), 271–276.

    Article  CAS  PubMed  Google Scholar 

  172. Mori, T. A., Croft, K. D., Puddey, I. B., & Beilin, L. J. (1999). An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Analytical Biochemistry, 268(1), 117–125.

    Article  CAS  PubMed  Google Scholar 

  173. Tsikas, D., Schwedhelm, E., Fauler, J., Gutzki, F. M., Mayatepek, E., & Frolich, J. C. (1998). Specific and rapid quantification of 8-iso-prostaglandin F2alpha in urine of healthy humans and patients with Zellweger syndrome by gas chromatography-tandem mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 716(1-2), 7–17.

    Article  CAS  PubMed  Google Scholar 

  174. Lee, C. Y., Jenner, A. M., & Halliwell, B. (2004). Rapid preparation of human urine and plasma samples for analysis of F2-isoprostanes by gas chromatography-mass spectrometry. Biochemical and Biophysical Research Communications, 320(3), 696–702.

    Article  CAS  PubMed  Google Scholar 

  175. Walter, M. F., Blumberg, J. B., Dolnikowski, G. G., & Handelman, G. J. (2000). Streamlined F2-isoprostane analysis in plasma and urine with high-performance liquid chromatography and gas chromatography/mass spectroscopy. Analytical Biochemistry, 280(1), 73–79.

    Article  CAS  PubMed  Google Scholar 

  176. Schwedhelm, E., Tsikas, D., Durand, T., Gutzki, F. M., Guy, A., Rossi, J. C., et al. (2000). Tandem mass spectrometric quantification of 8-iso-prostaglandin F2alpha and its metabolite 2,3-dinor-5,6-dihydro-8-iso-prostaglandin F2alpha in human urine. Journal of Chromatography. B, Biomedical Sciences and Applications, 744(1), 99–112.

    Article  CAS  PubMed  Google Scholar 

  177. Tsikas, D. (1998). Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. Journal of Chromatography. B, Biomedical Sciences and Applications, 717(1-2), 201–245.

    Article  CAS  PubMed  Google Scholar 

  178. Tsikas, D., Schwedhelm, E., Suchy, M. T., Niemann, J., Gutzki, F. M., Erpenbeck, V. J., et al. (2003). Divergence in urinary 8-iso-PGF(2alpha) (iPF(2alpha)-III, 15-F(2t)-IsoP) levels from gas chromatography-tandem mass spectrometry quantification after thin-layer chromatography and immunoaffinity column chromatography reveals heterogeneity of 8-iso-PGF(2alpha). Possible methodological, mechanistic and clinical implications. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 794(2), 237–255.

    Article  CAS  PubMed  Google Scholar 

  179. Li, H., Lawson, J. A., Reilly, M., Adiyaman, M., Hwang, S. W., Rokach, J., et al. (1999). Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F2-isoprostanes in human urine. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13381–13386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yin, H., Porter, N. A., & Morrow, J. D. (2005). Separation and identification of F2-isoprostane regioisomers and diastereomers by novel liquid chromatographic/mass spectrometric methods. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 827(1), 157–164.

    Article  CAS  PubMed  Google Scholar 

  181. Waugh, R. J., Morrow, J. D., Roberts, L. J., II, & Murphy, R. C. (1997). Identification and relative quantitation of F2-isoprostane regioisomers formed in vivo in the rat. Free Radical Biology & Medicine, 23(6), 943–954.

    Article  CAS  Google Scholar 

  182. Zhang, H., Il’yasova, D., Sztaray, J., Young, S. P., Wang, F., & Millington, D. S. (2010). Quantification of the oxidative damage biomarker 2,3-dinor-8-isoprostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry. Analytical Biochemistry, 399(2), 302–304.

    Article  CAS  PubMed  Google Scholar 

  183. Liang, Y., Wei, P., Duke, R. W., Reaven, P. D., Harman, S. M., Cutler, R. G., et al. (2003). Quantification of 8-iso-prostaglandin-F(2alpha) and 2,3-dinor-8-iso-prostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry. Free Radical Biology & Medicine, 34(4), 409–418.

    Article  CAS  Google Scholar 

  184. Dahl, J. H., & van Breemen, R. B. (2010). Rapid quantitative analysis of 8-iso-prostaglandin-F(2alpha) using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method. Analytical Biochemistry, 404(2), 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Taylor, A. W., Bruno, R. S., Frei, B., & Traber, M. G. (2006). Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes. Analytical Biochemistry, 350(1), 41–51.

    Article  CAS  PubMed  Google Scholar 

  186. Bastani, N. E., Gundersen, T. E., & Blomhoff, R. (2009). Determination of 8-epi PGF(2alpha) concentrations as a biomarker of oxidative stress using triple-stage liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 23(18), 2885–2890.

    Article  CAS  PubMed  Google Scholar 

  187. Song, W. L., Lawson, J. A., Wang, M., Zou, H., & FitzGerald, G. A. (2007). Noninvasive assessment of the role of cyclooxygenases in cardiovascular health: A detailed HPLC/MS/MS method. Methods in Enzymology, 433, 51–72.

    Article  CAS  PubMed  Google Scholar 

  188. Yan, W., Byrd, G. D., & Ogden, M. W. (2007). Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. Journal of Lipid Research, 48(7), 1607–1617.

    Article  CAS  PubMed  Google Scholar 

  189. Mizuno, K., & Kataoka, H. (2015). Analysis of urinary 8-isoprostane as an oxidative stress biomarker by stable isotope dilution using automated online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 112, 36–42.

    Article  CAS  PubMed  Google Scholar 

  190. Ohashi, N., & Yoshikawa, M. (2000). Rapid and sensitive quantification of 8-isoprostaglandin F2alpha in human plasma and urine by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 746(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  191. Sircar, D., & Subbaiah, P. V. (2007). Isoprostane measurement in plasma and urine by liquid chromatography-mass spectrometry with one-step sample preparation. Clinical Chemistry, 53(2), 251–258.

    Article  CAS  PubMed  Google Scholar 

  192. Tsikas, D., & Suchy, M. T. (2016). Protocols for the measurement of the F2-isoprostane, 15(S)-8-iso-prostaglandin F2alpha, in biological samples by GC-MS or GC-MS/MS coupled with immunoaffinity column chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1019, 191–201.

    Article  CAS  PubMed  Google Scholar 

  193. Smith, K. A., Shepherd, J., Wakil, A., & Kilpatrick, E. S. (2011). A comparison of methods for the measurement of 8-isoPGF(2alpha): A marker of oxidative stress. Annals of Clinical Biochemistry, 48(Pt 2), 147–154.

    Article  CAS  PubMed  Google Scholar 

  194. Mittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11–19.

    Article  CAS  PubMed  Google Scholar 

  195. Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology & Medicine, 29(3-4), 222–230.

    Article  CAS  Google Scholar 

  196. Dikalov, S. I., & Harrison, D. G. (2014). Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxidants & Redox Signaling, 20(2), 372–382.

    Article  CAS  Google Scholar 

  197. Zielonka, J., & Kalyanaraman, B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radical Biology & Medicine, 48(8), 983–1001.

    Article  CAS  Google Scholar 

  198. Kalyanaraman, B., Dranka, B. P., Hardy, M., Michalski, R., & Zielonka, J. (2014). HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection. Biochimica et Biophysica Acta, 1840(2), 739–744.

    Article  CAS  PubMed  Google Scholar 

  199. Xiao, Y., & Meierhofer, D. (2018). Are hydroethidine-based probes reliable for reactive oxygen species detection? Antioxidants & Redox Signaling.

    Google Scholar 

  200. Madian, A. G., & Regnier, F. E. (2010). Proteomic identification of carbonylated proteins and their oxidation sites. Journal of Proteome Research, 9(8), 3766–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Verrastro, I., Pasha, S., Jensen, K. T., Pitt, A. R., & Spickett, C. M. (2015). Mass spectrometry-based methods for identifying oxidized proteins in disease: Advances and challenges. Biomolecules, 5(2), 378–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ebadi, M., Brown-Borg, H., El Refaey, H., Singh, B. B., Garrett, S., Shavali, S., et al. (2005). Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Brain Research. Molecular Brain Research, 134(1), 67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. El Hindy, M., Hezwani, M., Corry, D., Hull, J., El Amraoui, F., Harris, M., et al. (2014). The branched-chain aminotransferase proteins: Novel redox chaperones for protein disulfide isomerase—implications in Alzheimer’s disease. Antioxidants & Redox Signaling, 20(16), 2497–2513.

    Article  CAS  Google Scholar 

  204. Su, H., Velly, A. M., Salah, M. H., Benarroch, M., Trifiro, M., Schipper, H. M., et al. (2012). Altered redox homeostasis in human diabetes saliva. Journal of Oral Pathology & Medicine, 41(3), 235–241.

    Article  CAS  Google Scholar 

  205. Gally, F., Kosmider, B., Weaver, M. R., Pate, K. M., Hartshorn, K. L., & Oberley-Deegan, R. E. (2013). FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 305(1), L64–L72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wilson, D. J., & Konermann, L. (2003). A capillary mixer with adjustable reaction chamber volume for millisecond time-resolved studies by electrospray mass spectrometry. Analytical Chemistry, 75(23), 6408–6414.

    Article  CAS  PubMed  Google Scholar 

  207. Wilson, D. J., & Konermann, L. (2004). Mechanistic studies on enzymatic reactions by electrospray ionization MS using a capillary mixer with adjustable reaction chamber volume for time-resolved measurements. Analytical Chemistry, 76(9), 2537–2543.

    Article  CAS  PubMed  Google Scholar 

  208. Wilson, D. J., & Konermann, L. (2005). Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device. Analytical Chemistry, 77(21), 6887–6894.

    Article  CAS  PubMed  Google Scholar 

  209. Haynes, A. C., Qian, J., Reisz, J. A., Furdui, C. M., & Lowther, W. T. (2013). Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. The Journal of Biological Chemistry, 288(41), 29714–29723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ellis, H. R., & Poole, L. B. (1997). Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry, 36(43), 13349–13356.

    Article  CAS  PubMed  Google Scholar 

  211. Poole, L. B., & Ellis, H. R. (2002). Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods in Enzymology, 348, 122–136.

    Article  CAS  PubMed  Google Scholar 

  212. Kim, J. S., & Raines, R. T. (1994). A misfolded but active dimer of bovine seminal ribonuclease. European Journal of Biochemistry, 224(1), 109–114.

    Article  CAS  PubMed  Google Scholar 

  213. Fuangthong, M., & Helmann, J. D. (2002). The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6690–6695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Reisz, J. A., Bechtold, E., King, S. B., Poole, L. B., & Furdui, C. M. (2013). Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. The FEBS Journal, 280(23), 6150–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chen, X., Wu, H., Park, C. M., Poole, T. H., Keceli, G., Devarie-Baez, N. O., et al. (2017). Discovery of heteroaromatic sulfones as a new class of biologically compatible thiol-selective reagents. ACS Chemical Biology, 12(8), 2201–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Poole, L. B., Klomsiri, C., Knaggs, S. A., Furdui, C. M., Nelson, K. J., Thomas, M. J., et al. (2007). Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjugate Chemistry, 18(6), 2004–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Klomsiri, C., Nelson, K. J., Bechtold, E., Soito, L., Johnson, L. C., Lowther, W. T., et al. (2010). Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods in Enzymology, 473, 77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Qian, J., Klomsiri, C., Wright, M. W., King, S. B., Tsang, A. W., Poole, L. B., et al. (2011). Simple synthesis of 1,3-cyclopentanedione derived probes for labeling sulfenic acid proteins. Chemical communications (Cambridge, England), 47(32), 9203–9205.

    Article  CAS  Google Scholar 

  219. Qian, J., Wani, R., Klomsiri, C., Poole, L. B., Tsang, A. W., & Furdui, C. M. (2012). A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of beta-ketoesters as cleavable probes. Chemical communications (Cambridge, England), 48(34), 4091–4093.

    Article  CAS  Google Scholar 

  220. Holmila, R. J., Vance, S. A., Chen, X., Wu, H., Shukla, K., Bharadwaj, M. S., et al. (2018). Mitochondria-targeted probes for imaging protein sulfenylation. Scientific Reports, 8(1), 6635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Poole, T. H., Reisz, J. A., Zhao, W., Poole, L. B., Furdui, C. M., & King, S. B. (2014). Strained cycloalkynes as new protein sulfenic acid traps. Journal of the American Chemical Society, 136(17), 6167–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pan, J., & Carroll, K. S. (2013). Persulfide reactivity in the detection of protein s-sulfhydration. ACS Chemical Biology, 8(6), 1110–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lourette, N., Smallwood, H., Wu, S., Robinson, E. W., Squier, T. C., Smith, R. D., et al. (2010). A top-down LC-FTICR MS-based strategy for characterizing oxidized calmodulin in activated macrophages. Journal of the American Society for Mass Spectrometry, 21(6), 930–939.

    Article  CAS  PubMed  Google Scholar 

  224. Mao, P., & Wang, D. (2014). Top-down proteomics of a drop of blood for diabetes monitoring. Journal of Proteome Research, 13(3), 1560–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Scotcher, J., Clarke, D. J., Weidt, S. K., Mackay, C. L., Hupp, T. R., Sadler, P. J., et al. (2011). Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 22(5), 888–897.

    Article  CAS  PubMed  Google Scholar 

  226. Torta, F., Elviri, L., & Bachi, A. (2010). Direct and indirect detection methods for the analysis of S-nitrosylated peptides and proteins. Methods in Enzymology, 473, 265–280.

    Article  CAS  PubMed  Google Scholar 

  227. Reddie, K. G., Seo, Y. H., Muse Iii, W. B., Leonard, S. E., & Carroll, K. S. (2008). A chemical approach for detecting sulfenic acid-modified proteins in living cells. Molecular BioSystems, 4(6), 521–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Guo, J., Gaffrey, M. J., Su, D., Liu, T., Camp, D. G., II, Smith, R. D., et al. (2014). Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols, 9(1), 64–75.

    Article  CAS  PubMed  Google Scholar 

  229. Jaffrey, S. R., & Snyder, S. H. (2001). The biotin switch method for the detection of S-nitrosylated proteins. Science's STKE, 2001(86), pl1.

    Article  CAS  PubMed  Google Scholar 

  230. Forrester, M. T., Foster, M. W., & Stamler, J. S. (2007). Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. The Journal of Biological Chemistry, 282(19), 13977–13983.

    Article  CAS  PubMed  Google Scholar 

  231. Pastore, A., & Piemonte, F. (2013). Protein glutathionylation in cardiovascular diseases. International Journal of Molecular Sciences, 14(10), 20845–20876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Su, D., Gaffrey, M. J., Guo, J., Hatchell, K. E., Chu, R. K., Clauss, T. R., et al. (2014). Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radical Biology & Medicine, 67, 460–470.

    Article  CAS  Google Scholar 

  233. Lo Conte, M., Lin, J., Wilson, M. A., & Carroll, K. S. (2015). A chemical approach for the detection of protein sulfinylation. ACS Chemical Biology, 10(8), 1825–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Majmudar, J. D., Konopko, A. M., Labby, K. J., Tom, C. T., Crellin, J. E., Prakash, A., et al. (2016). Harnessing redox cross-reactivity to profile distinct cysteine modifications. Journal of the American Chemical Society, 138(6), 1852–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Truong, T. H., Garcia, F. J., Seo, Y. H., & Carroll, K. S. (2011). Isotope-coded chemical reporter and acid-cleavable affinity reagents for monitoring protein sulfenic acids. Bioorganic & Medicinal Chemistry Letters, 21(17), 5015–5020.

    Article  CAS  Google Scholar 

  236. Bak, D. W., Pizzagalli, M. D., & Weerapana, E. (2017). Identifying functional cysteine residues in the mitochondria. ACS Chemical Biology, 12(4), 947–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wani, R., Qian, J., Yin, L., Bechtold, E., King, S. B., Poole, L. B., et al. (2011). Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10550–10555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Keyes, J. D., Parsonage, D., Yammani, R. D., Rogers, L. C., Kesty, C., Furdui, C. M., et al. (2017). Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals. Free Radical Biology & Medicine, 112, 534–543.

    Article  CAS  Google Scholar 

  239. Nelson, K. J., Bolduc, J. A., Wu, H., Collins, J. A., Burke, E. A., Reisz, J. A., et al. (2018). H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. The Journal of Biological Chemistry.

    Google Scholar 

  240. Schwertassek, U., Balmer, Y., Gutscher, M., Weingarten, L., Preuss, M., Engelhard, J., et al. (2007). Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. The EMBO Journal, 26(13), 3086–3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Putker, M., Madl, T., Vos, H. R., de Ruiter, H., Visscher, M., van den Berg, M. C., et al. (2013). Redox-dependent control of FOXO/DAF-16 by transportin-1. Molecular Cell, 49(4), 730–742.

    Article  CAS  PubMed  Google Scholar 

  242. Anand, S., Samuel, M., Ang, C. S., Keerthikumar, S., & Mathivanan, S. (2017). Label-based and label-free strategies for protein quantitation. Methods in Molecular Biology, 1549, 31–43.

    Article  CAS  PubMed  Google Scholar 

  243. Zaccarin, M., Falda, M., Roveri, A., Bosello-Travain, V., Bordin, L., Maiorino, M., et al. (2014). Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes. Free Radical Biology & Medicine, 71, 90–98.

    Article  CAS  Google Scholar 

  244. Seo, Y. H., & Carroll, K. S. (2011). Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angewandte Chemie (International Ed. in English), 50(6), 1342–1345.

    Article  CAS  Google Scholar 

  245. Sun, Q. A., Wang, B., Miyagi, M., Hess, D. T., & Stamler, J. S. (2013). Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): Sites and nature of oxidative modification. The Journal of Biological Chemistry, 288(32), 22961–22971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Yuan, J., Gao, H., Sui, J., Duan, H., Chen, W. N., & Ching, C. B. (2012). Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: An iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicological Sciences, 126(1), 149–161.

    Article  CAS  PubMed  Google Scholar 

  247. Yuan, J., Gao, H., & Ching, C. B. (2011). Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicology Letters, 207(3), 213–221.

    Article  CAS  PubMed  Google Scholar 

  248. Shi, M., Hwang, H., & Zhang, J. (2013). Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ. Methods in Molecular Biology, 951, 279–296.

    Article  CAS  PubMed  Google Scholar 

  249. Wojdyla, K., Williamson, J., Roepstorff, P., & Rogowska-Wrzesinska, A. (2015). The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations. Journal of Proteomics, 113, 415–434.

    Article  CAS  PubMed  Google Scholar 

  250. Kim, C. R., Choi, S. J., Kim, J. K., Park, C. K., Gim, M. C., Kim, Y. J., et al. (2017). 2,4-bis(1,1-dimethylethyl)phenol from Cinnamomum loureirii improves cognitive deficit, cholinergic dysfunction, and oxidative damage in TMT-treated mice. Biological & Pharmaceutical Bulletin, 40(6), 932–935.

    Article  CAS  Google Scholar 

  251. Li, Z. L., & Zhou, S. F. (2016). A SILAC-based approach elicits the proteomic responses to vancomycin-associated nephrotoxicity in human proximal tubule epithelial HK-2 cells. Molecules, 21(2), 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Pan, S. T., Zhou, Z. W., He, Z. X., Zhang, X., Yang, T., Yang, Y. X., et al. (2015). Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach. Drug Design, Development and Therapy, 9, 937–968.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Yin, H., Xu, L., & Porter, N. A. (2011). Free radical lipid peroxidation: Mechanisms and analysis. Chemical Reviews, 111(10), 5944–5972.

    Article  CAS  PubMed  Google Scholar 

  254. Davi, G., Falco, A., & Patrono, C. (2005). Lipid peroxidation in diabetes mellitus. Antioxidants & Redox Signaling, 7(1-2), 256–268.

    Article  CAS  Google Scholar 

  255. Sugamura, K., & Keaney, J. F., Jr. (2011). Reactive oxygen species in cardiovascular disease. Free Radical Biology & Medicine, 51(5), 978–992.

    Article  CAS  Google Scholar 

  256. Panth, N., Paudel, K. R., & Parajuli, K. (2016). Reactive oxygen species: A key hallmark of cardiovascular disease. Advances in Medicine, 2016, 9152732.

    Article  PubMed  PubMed Central  Google Scholar 

  257. He, F., & Zuo, L. (2015). Redox roles of reactive oxygen species in cardiovascular diseases. International Journal of Molecular Sciences, 16(11), 27770–27780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Cervantes Gracia, K., Llanas-Cornejo, D., & Husi, H. (2017). CVD and oxidative stress. Journal of Clinical Medicine, 6(2).

    Google Scholar 

  259. Afanas’ev, I. (2011). ROS and RNS signaling in heart disorders: Could antioxidant treatment be successful? Oxidative Medicine and Cellular Longevity, 2011, 293769.

    PubMed  PubMed Central  Google Scholar 

  260. Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: How should we move forward? Cardiovascular Research, 47(3), 410–418.

    Article  CAS  PubMed  Google Scholar 

  261. Bradley-Whitman, M. A., & Lovell, M. A. (2015). Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update. Archives of Toxicology, 89(7), 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Sultana, R., Perluigi, M., & Butterfield, D. A. (2013). Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radical Biology & Medicine, 62, 157–169.

    Article  CAS  Google Scholar 

  263. Ayala, A., Munoz, M. F., & Arguelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Girotti, A. W. (1998). Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research, 39(8), 1529–1542.

    Article  CAS  PubMed  Google Scholar 

  265. Kanner, J., German, J. B., & Kinsella, J. E. (1987). Initiation of lipid peroxidation in biological systems. Critical Reviews in Food Science and Nutrition, 25(4), 317–364.

    Article  CAS  PubMed  Google Scholar 

  266. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine, 11(1), 81–128.

    Article  CAS  Google Scholar 

  267. Esterbauer, H., Eckl, P., & Ortner, A. (1990). Possible mutagens derived from lipids and lipid precursors. Mutation Research, 238(3), 223–233.

    Article  CAS  PubMed  Google Scholar 

  268. Pizzimenti, S., Ciamporcero, E., Daga, M., Pettazzoni, P., Arcaro, A., Cetrangolo, G., et al. (2013). Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Frontiers in Physiology, 4, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology, 153(1), 6–20.

    Article  CAS  PubMed  Google Scholar 

  270. Marnett, L. J. (2002). Oxy radicals, lipid peroxidation and DNA damage. Toxicology, 181-182, 219–222.

    Article  CAS  PubMed  Google Scholar 

  271. Cheng, J., Wang, F., Yu, D. F., Wu, P. F., & Chen, J. G. (2011). The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. European Journal of Pharmacology, 650(1), 184–194.

    Article  CAS  PubMed  Google Scholar 

  272. Slatter, D. A., Avery, N. C., & Bailey, A. J. (2004). Identification of a new cross-link and unique histidine adduct from bovine serum albumin incubated with malondialdehyde. The Journal of Biological Chemistry, 279(1), 61–69.

    Article  CAS  PubMed  Google Scholar 

  273. Esterbauer, H., & Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407–421.

    Article  CAS  PubMed  Google Scholar 

  274. Pryor, W. A. (1989). On the detection of lipid hydroperoxides in biological samples. Free Radical Biology & Medicine, 7(2), 177–178.

    Article  CAS  Google Scholar 

  275. Jiang, Z. Y., Hunt, J. V., & Wolff, S. P. (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Analytical Biochemistry, 202(2), 384–389.

    Article  CAS  PubMed  Google Scholar 

  276. Puppolo, M., Varma, D., & Jansen, S. A. (2014). A review of analytical methods for eicosanoids in brain tissue. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 964, 50–64.

    Article  CAS  PubMed  Google Scholar 

  277. Hughes, H., Smith, C. V., Tsokos-Kuhn, J. O., & Mitchell, J. R. (1986). Quantitation of lipid peroxidation products by gas chromatography-mass spectrometry. Analytical Biochemistry, 152(1), 107–112.

    Article  CAS  PubMed  Google Scholar 

  278. Hughes, H., Smith, C. V., Horning, E. C., & Mitchell, J. R. (1983). High-performance liquid chromatography and gas chromatography-mass spectrometry determination of specific lipid peroxidation products in vivo. Analytical Biochemistry, 130(2), 431–436.

    Article  CAS  PubMed  Google Scholar 

  279. Frankel, E. N., Hu, M. L., & Tappel, A. L. (1989). Rapid headspace gas chromatography of hexanal as a measure of lipid peroxidation in biological samples. Lipids, 24(11), 976–981.

    Article  CAS  PubMed  Google Scholar 

  280. Selley, M. L., Bartlett, M. R., McGuiness, J. A., Hapel, A. J., & Ardlie, N. G. (1989). Determination of the lipid peroxidation product trans-4-hydroxy-2-nonenal in biological samples by high-performance liquid chromatography and combined capillary column gas chromatography-negative-ion chemical ionisation mass spectrometry. Journal of Chromatography, 488(2), 329–340.

    Article  CAS  PubMed  Google Scholar 

  281. Norsten-Hoog, C., & Cronholm, T. (1990). Analysis of aldehydic lipid peroxidation products in rat liver and hepatocytes by gas chromatography and mass spectrometry of the oxime-tert-butyldimethylsilyl derivatives. Analytical Biochemistry, 189(1), 131–137.

    Article  CAS  PubMed  Google Scholar 

  282. Luo, X. P., Yazdanpanah, M., Bhooi, N., & Lehotay, D. C. (1995). Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Analytical Biochemistry, 228(2), 294–298.

    Article  CAS  PubMed  Google Scholar 

  283. Bringmann, G., Gassen, M., & Schneider, S. (1994). Toxic aldehydes formed by lipid peroxidation. I. Sensitive, gas chromatography-based stereoanalysis of 4-hydroxyalkenals, toxic products of lipid peroxidation. Journal of Chromatography. A, 670(1-2), 153–160.

    Article  CAS  PubMed  Google Scholar 

  284. Honzatko, A., Brichac, J., & Picklo, M. J. (2007). Quantification of trans-4-hydroxy-2-nonenal enantiomers and metabolites by LC-ESI-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 857(1), 115–122.

    Article  CAS  PubMed  Google Scholar 

  285. Hiratsuka, A., Tobita, K., Saito, H., Sakamoto, Y., Nakano, H., Ogura, K., et al. (2001). (S)-preferential detoxification of 4-hydroxy-2(E)-nonenal enantiomers by hepatic glutathione S-transferase isoforms in guinea-pigs and rats. The Biochemical Journal, 355(Pt 1), 237–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hiratsuka, A., Hirose, K., Saito, H., & Watabe, T. (2000). 4-Hydroxy-2(E)-nonenal enantiomers: (S)-selective inactivation of glyceraldehyde-3-phosphate dehydrogenase and detoxification by rat glutathione S-transferase A4-4. The Biochemical Journal, 349(Pt 3), 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Barrera, G., Pizzimenti, S., Ciamporcero, E. S., Daga, M., Ullio, C., Arcaro, A., et al. (2015). Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxidants & Redox Signaling, 22(18), 1681–1702.

    Article  CAS  Google Scholar 

  288. Orioli, M., Aldini, G., Beretta, G., Facino, R. M., & Carini, M. (2005). LC-ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 827(1), 109–118.

    Article  CAS  PubMed  Google Scholar 

  289. Yuan, W., Zhang, Y., Xiong, Y., Tao, T., Wang, Y., Yao, J., et al. (2017). Highly selective and large scale mass spectrometric analysis of 4-hydroxynonenal modification via fluorous derivatization and fluorous solid-phase extraction. Analytical Chemistry, 89(5), 3093–3100.

    Article  CAS  PubMed  Google Scholar 

  290. Pecorelli, A., Cervellati, C., Cortelazzo, A., Cervellati, F., Sticozzi, C., Mirasole, C., et al. (2016). Proteomic analysis of 4-hydroxynonenal and nitrotyrosine modified proteins in RTT fibroblasts. The International Journal of Biochemistry & Cell Biology, 81(Pt B), 236–245.

    Article  CAS  Google Scholar 

  291. Gurbuz, G., & Heinonen, M. (2015). LC-MS investigations on interactions between isolated beta-lactoglobulin peptides and lipid oxidation product malondialdehyde. Food Chemistry, 175, 300–305.

    Article  CAS  PubMed  Google Scholar 

  292. Andringa, K. K., Udoh, U. S., Landar, A., & Bailey, S. M. (2014). Proteomic analysis of 4-hydroxynonenal (4-HNE) modified proteins in liver mitochondria from chronic ethanol-fed rats. Redox Biology, 2, 1038–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Schmitt, D., Shen, Z., Zhang, R., Colles, S. M., Wu, W., Salomon, R. G., et al. (1999). Leukocytes utilize myeloperoxidase-generated nitrating intermediates as physiological catalysts for the generation of biologically active oxidized lipids and sterols in serum. Biochemistry, 38(51), 16904–16915.

    Article  CAS  PubMed  Google Scholar 

  294. Davis, T. A., Gao, L., Yin, H., Morrow, J. D., & Porter, N. A. (2006). In vivo and in vitro lipid peroxidation of arachidonate esters: The effect of fish oil omega-3 lipids on product distribution. Journal of the American Chemical Society, 128(46), 14897–14904.

    Article  CAS  PubMed  Google Scholar 

  295. Lawson, J. A., Kim, S., Powell, W. S., FitzGerald, G. A., & Rokach, J. (2006). Oxidized derivatives of omega-3 fatty acids: Identification of IPF3 alpha-VI in human urine. Journal of Lipid Research, 47(11), 2515–2524.

    Article  CAS  PubMed  Google Scholar 

  296. Yoshida, Y., Kodai, S., Takemura, S., Minamiyama, Y., & Niki, E. (2008). Simultaneous measurement of F2-isoprostane, hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid, and hydroxycholesterols from physiological samples. Analytical Biochemistry, 379(1), 105–115.

    Article  CAS  PubMed  Google Scholar 

  297. Fu, J., Schoeman, J. C., Harms, A. C., van Wietmarschen, H. A., Vreeken, R. J., Berger, R., et al. (2016). Metabolomics profiling of the free and total oxidised lipids in urine by LC-MS/MS: Application in patients with rheumatoid arthritis. Analytical and Bioanalytical Chemistry, 408(23), 6307–6319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Guido, D. M., McKenna, R., & Mathews, W. R. (1993). Quantitation of hydroperoxy-eicosatetraenoic acids and hydroxy-eicosatetraenoic acids as indicators of lipid peroxidation using gas chromatography-mass spectrometry. Analytical Biochemistry, 209(1), 123–129.

    Article  CAS  PubMed  Google Scholar 

  299. Hill, E., & Murphy, R. C. (1992). Quantitation of 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) produced by human polymorphonuclear leukocytes using electron capture ionization gas chromatography/mass spectrometry. Biological Mass Spectrometry, 21(5), 249–253.

    Article  CAS  PubMed  Google Scholar 

  300. Proudfoot, J., Barden, A., Mori, T. A., Burke, V., Croft, K. D., Beilin, L. J., et al. (1999). Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation-a comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Analytical Biochemistry, 272(2), 209–215.

    Article  CAS  PubMed  Google Scholar 

  301. Bachi, A., Zuccato, E., Baraldi, M., Fanelli, R., & Chiabrando, C. (1996). Measurement of urinary 8-Epi-prostaglandin F2alpha, a novel index of lipid peroxidation in vivo, by immunoaffinity extraction/gas chromatography-mass spectrometry. Basal levels in smokers and nonsmokers. Free Radical Biology & Medicine, 20(4), 619–624.

    Article  CAS  Google Scholar 

  302. Nourooz-Zadeh, J., Gopaul, N. K., Barrow, S., Mallet, A. I., & Anggard, E. E. (1995). Analysis of F2-isoprostanes as indicators of non-enzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: Development of a solid-phase extraction procedure. Journal of Chromatography. B, Biomedical Applications, 667(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  303. DeLong, C. J., Baker, P. R., Samuel, M., Cui, Z., & Thomas, M. J. (2001). Molecular species composition of rat liver phospholipids by ESI-MS/MS: The effect of chromatography. Journal of Lipid Research, 42(12), 1959–1968.

    Article  CAS  PubMed  Google Scholar 

  304. Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T., & Lehmann, W. D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2339–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Mitchell, T. W., Buffenstein, R., & Hulbert, A. J. (2007). Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): A comparative study using shotgun lipidomics. Experimental Gerontology, 42(11), 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  306. Kulig, W., Olzynska, A., Jurkiewicz, P., Kantola, A. M., Komulainen, S., Manna, M., et al. (2015). Cholesterol under oxidative stress-how lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radical Biology & Medicine, 84, 30–41.

    Article  CAS  Google Scholar 

  307. Mori, T. A., Croft, K. D., Puddey, I. B., & Beilin, L. J. (1996). Analysis of native and oxidized low-density lipoprotein oxysterols using gas chromatography-mass spectrometry with selective ion monitoring. Redox Report, 2(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  308. Matysik, S., Klunemann, H. H., & Schmitz, G. (2012). Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors. Clinical Chemistry, 58(11), 1557–1564.

    Article  CAS  PubMed  Google Scholar 

  309. Singh, G., Gutierrez, A., Xu, K., & Blair, I. A. (2000). Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: Analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Analytical Chemistry, 72(14), 3007–3013.

    Article  CAS  PubMed  Google Scholar 

  310. Matos Cordeiro Borges, M., Leijoto de Oliveira, H., & Bastos Borges, K. (2017). Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol. Electrophoresis, 38(17), 2150–2159.

    Article  CAS  PubMed  Google Scholar 

  311. Kim, D., Park, J. B., Choi, W. K., Lee, S. J., Lim, I., & Bae, S. K. (2016). Simultaneous determination of beta-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: Application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction of Zea mays L. Journal of Separation Science, 39(21), 4060–4070.

    Article  CAS  PubMed  Google Scholar 

  312. Fong, B. M., Tam, S., & Leung, K. S. (2013). Determination of plasma cholesterol sulfate by LC-APCI-MS/MS in the context of pediatric autism. Talanta, 116, 115–121.

    Article  CAS  PubMed  Google Scholar 

  313. Khajuria, R. K., Bhardwaj, V., Gupta, R. K., Sharma, P., Somal, P., Mehta, P., et al. (2007). Development of a rapid normal-phase LC-positive ion APCI-MS method for simultaneous detection and quantitation of cholesterol, androst-4-ene-3,1 7-dione, and androsta-1,4-diene-3,17-dione. Journal of Chromatographic Science, 45(8), 519–523.

    Article  CAS  PubMed  Google Scholar 

  314. Saldanha, T., Sawaya, A. C., Eberlin, M. N., & Bragagnolo, N. (2006). HPLC separation and determination of 12 cholesterol oxidation products in fish: Comparative study of RI, UV, and APCI-MS detectors. Journal of Agricultural and Food Chemistry, 54(12), 4107–4113.

    Article  CAS  PubMed  Google Scholar 

  315. Raith, K., Brenner, C., Farwanah, H., Muller, G., Eder, K., & Neubert, R. H. (2005). A new LC/APCI-MS method for the determination of cholesterol oxidation products in food. Journal of Chromatography. A, 1067(1-2), 207–211.

    Article  CAS  PubMed  Google Scholar 

  316. Saliu, F., Modugno, F., Orlandi, M., & Colombini, M. P. (2011). HPLC-APCI-MS analysis of triacylglycerols (TAGs) in historical pharmaceutical ointments from the eighteenth century. Analytical and Bioanalytical Chemistry, 401(6), 1785–1800.

    Article  CAS  PubMed  Google Scholar 

  317. Rezanka, T., Schreiberova, O., Krulikovska, T., Masak, J., & Sigler, K. (2010). RP-HPLC/MS-APCI analysis of odd-chain TAGs from Rhodococcus erythropolis including some regioisomers. Chemistry and Physics of Lipids, 163(4-5), 373–380.

    Article  CAS  PubMed  Google Scholar 

  318. Fasciotti, M., & Pereira Netto, A. D. (2010). Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS. Talanta, 81(3), 1116–1125.

    Article  CAS  PubMed  Google Scholar 

  319. Beermann, C., Winterling, N., Green, A., Mobius, M., Schmitt, J. J., & Boehm, G. (2007). Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography—atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS). Lipids, 42(4), 383–394.

    Article  CAS  PubMed  Google Scholar 

  320. Haschke, M., Zhang, Y. L., Kahle, C., Klawitter, J., Korecka, M., Shaw, L. M., et al. (2007). HPLC-atmospheric pressure chemical ionization MS/MS for quantification of 15-F2t-isoprostane in human urine and plasma. Clinical Chemistry, 53(3), 489–497.

    Article  CAS  PubMed  Google Scholar 

  321. Griffiths, W. J., Crick, P. J., & Wang, Y. (2013). Methods for oxysterol analysis: Past, present and future. Biochemical Pharmacology, 86(1), 3–14.

    Article  CAS  PubMed  Google Scholar 

  322. Jiang, X., Ory, D. S., & Han, X. (2007). Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. Rapid Communications in Mass Spectrometry, 21(2), 141–152.

    Article  CAS  PubMed  Google Scholar 

  323. Jiang, X., Sidhu, R., Porter, F. D., Yanjanin, N. M., Speak, A. O., te Vruchte, D. T., et al. (2011). A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. Journal of Lipid Research, 52(7), 1435–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Porter, F. D., Scherrer, D. E., Lanier, M. H., Langmade, S. J., Molugu, V., Gale, S. E., et al. (2010). Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Science Translational Medicine, 2(56), 56ra81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Wang, W., Yang, J., Yang, H., Sanidad, K. Z., Hammock, B. D., Kim, D., et al. (2016). Effects of high-fat diet on plasma profiles of eicosanoid metabolites in mice. Prostaglandins & Other Lipid Mediators, 127, 9–13.

    Article  CAS  Google Scholar 

  326. Lee, Y. Y., & Lee, J. C. (2018). LC-MS/MS Analysis of Lipid Oxidation Products in Blood and Tissue Samples. Methods in Molecular Biology, 1730, 83–92.

    Article  CAS  PubMed  Google Scholar 

  327. Yuan, Z. X., Majchrzak-Hong, S., Keyes, G. S., Iadarola, M. J., Mannes, A. J., & Ramsden, C. E. (2018). Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 410(23), 6009–6029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Ostermann, A. I., Willenberg, I., & Schebb, N. H. (2015). Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Analytical and Bioanalytical Chemistry, 407(5), 1403–1414.

    Article  CAS  PubMed  Google Scholar 

  329. Hu, C., Wang, M., & Han, X. (2017). Shotgun lipidomics in substantiating lipid peroxidation in redox biology: Methods and applications. Redox Biology, 12, 946–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wang, M., Fang, H., & Han, X. (2012). Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Analytical Chemistry, 84(10), 4580–4586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. He, Q., Wang, M., Harris, N., & Han, X. (2013). Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts. American Journal of Physiology. Heart and Circulatory Physiology, 305(9), H1332–H1343.

    Article  CAS  PubMed  Google Scholar 

  332. Lai, L., Wang, M., Martin, O. J., Leone, T. C., Vega, R. B., Han, X., et al. (2014). A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. The Journal of Biological Chemistry, 289(4), 2250–2259.

    Article  CAS  PubMed  Google Scholar 

  333. Wang, M., Han, R. H., & Han, X. (2013). Fatty acidomics: Global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Analytical Chemistry, 85(19), 9312–9320.

    Article  CAS  PubMed  Google Scholar 

  334. Schuhmann, K., Herzog, R., Schwudke, D., Metelmann-Strupat, W., Bornstein, S. R., & Shevchenko, A. (2011). Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass spectrometers. Analytical Chemistry, 83(14), 5480–5487.

    Article  CAS  PubMed  Google Scholar 

  335. Bird, S. S., Marur, V. R., Stavrovskaya, I. G., & Kristal, B. S. (2013). Qualitative characterization of the rat liver mitochondrial lipidome using LC-MS profiling and high energy collisional dissociation (HCD) all ion fragmentation. Metabolomics, 9(1 Suppl), 67–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.

    Article  CAS  PubMed  Google Scholar 

  337. Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35(Web Server), W606–W612.

    Article  PubMed  PubMed Central  Google Scholar 

  338. Swenberg, J. A., Lu, K., Moeller, B. C., Gao, L., Upton, P. B., Nakamura, J., et al. (2011). Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology, and risk assessment. Toxicological Sciences, 120(Suppl 1), S130–S145.

    Article  CAS  PubMed  Google Scholar 

  339. Cooke, M. S., Evans, M. D., Dizdaroglu, M., & Lunec, J. (2003). Oxidative DNA damage: Mechanisms, mutation, and disease. The FASEB Journal, 17(10), 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  340. Kryston, T. B., Georgiev, A. B., Pissis, P., & Georgakilas, A. G. (2011). Role of oxidative stress and DNA damage in human carcinogenesis. Mutation Research, 711(1-2), 193–201.

    Article  CAS  PubMed  Google Scholar 

  341. Cadet, J., & Wagner, J. R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 5(2).

    Google Scholar 

  342. Cadet, J., & Poulsen, H. (2010). Measurement of oxidatively generated base damage in cellular DNA and urine. Free Radical Biology & Medicine, 48(11), 1457–1459.

    Article  CAS  Google Scholar 

  343. Lin, H. S., Jenner, A. M., Ong, C. N., Huang, S. H., Whiteman, M., & Halliwell, B. (2004). A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2′-deoxyguanosine: Measurement with gas chromatography-mass spectrometry after single solid-phase extraction. The Biochemical Journal, 380(Pt 2), 541–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Dizdaroglu, M., Jaruga, P., & Rodriguez, H. (2001). Measurement of 8-hydroxy-2′-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: Comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Research, 29(3), E12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Podmore, I. D., Cooper, D., Evans, M. D., Wood, M., & Lunec, J. (2000). Simultaneous measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine by HPLC-MS/MS. Biochemical and Biophysical Research Communications, 277(3), 764–770.

    Article  CAS  PubMed  Google Scholar 

  346. Taghizadeh, K., McFaline, J. L., Pang, B., Sullivan, M., Dong, M., Plummer, E., et al. (2008). Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nature Protocols, 3(8), 1287–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Ma, B., Jing, M., Villalta, P. W., Kapphahn, R. J., Montezuma, S. R., Ferrington, D. A., et al. (2016). Simultaneous determination of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in human retinal DNA by liquid chromatography nanoelectrospray-tandem mass spectrometry. Scientific Reports, 6, 22375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Kreutzer, D. A., & Essigmann, J. M. (1998). Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3578–3582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Li, D., Wang, M., Liehr, J. G., & Randerath, K. (1995). DNA adducts induced by lipids and lipid peroxidation products: Possible relationships to I-compounds. Mutation Research, 344(3-4), 117–126.

    Article  CAS  PubMed  Google Scholar 

  350. Blair, I. A. (2001). Lipid hydroperoxide-mediated DNA damage. Experimental Gerontology, 36(9), 1473–1481.

    Article  CAS  PubMed  Google Scholar 

  351. Blair, I. A. (2008). DNA adducts with lipid peroxidation products. The Journal of Biological Chemistry, 283(23), 15545–15549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Pollack, M., Yang, I. Y., Kim, H. Y., Blair, I. A., & Moriya, M. (2006). Translesion DNA synthesis across the heptanone--etheno-2′-deoxycytidine adduct in cells. Chemical Research in Toxicology, 19(8), 1074–1079.

    Article  CAS  PubMed  Google Scholar 

  353. Marnett, L. J. (1999). Lipid peroxidation-DNA damage by malondialdehyde. Mutation Research, 424(1-2), 83–95.

    Article  CAS  PubMed  Google Scholar 

  354. Ma, B., Villalta, P. W., Balbo, S., & Stepanov, I. (2014). Analysis of a malondialdehyde-deoxyguanosine adduct in human leukocyte DNA by liquid chromatography nanoelectrospray-high-resolution tandem mass spectrometry. Chemical Research in Toxicology, 27(10), 1829–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors of this review article are supported by the National Cancer Institute and National Institute of Environmental Health Sciences under award numbers R33 ES025645 (C.M.F., H.W., A.W.T), U01 CA215848 (C.M.F, X.C., A.W.T.), and P30 CA012197 Comprehensive Cancer Center of Wake Forest University NCI CCSG (C.M.F., J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. Furdui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Lee, J., Wu, H., Tsang, A.W., Furdui, C.M. (2019). Mass Spectrometry in Advancement of Redox Precision Medicine. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_19

Download citation

Publish with us

Policies and ethics