Skip to main content

The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein–Protein Interactions (PPIs)

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Mass Spectrometry (MS) has revolutionized the way we study biomolecules, especially proteins, their interactions and posttranslational modifications (PTM). As such MS has established itself as the leading tool for the analysis of PTMs mainly because this approach is highly sensitive, amenable to high throughput and is capable of assigning PTMs to specific sites in the amino acid sequence of proteins and peptides. Along with the advances in MS methodology there have been improvements in biochemical, genetic and cell biological approaches to mapping the interactome which are discussed with consideration for both the practical and technical considerations of these techniques. The interactome of a species is generally understood to represent the sum of all potential protein-protein interactions. There are still a number of barriers to the elucidation of the human interactome or any other species as physical contact between protein pairs that occur by selective molecular docking in a particular spatiotemporal biological context are not easily captured and measured.

PTMs massively increase the complexity of organismal proteomes and play a role in almost all aspects of cell biology, allowing for fine-tuning of protein structure, function and localization. There are an estimated 300 PTMS with a predicted 5% of the eukaryotic genome coding for enzymes involved in protein modification, however we have not yet been able to reliably map PTM proteomes due to limitations in sample preparation, analytical techniques, data analysis, and the substoichiometric and transient nature of some PTMs. Improvements in proteomic and mass spectrometry methods, as well as sample preparation, have been exploited in a large number of proteome-wide surveys of PTMs in many different organisms. Here we focus on previously published global PTM proteome studies in the Apicomplexan parasites T. gondii and P. falciparum which offer numerous insights into the abundance and function of each of the studied PTM in the Apicomplexa. Integration of these datasets provide a more complete picture of the relative importance of PTM and crosstalk between them and how together PTM globally change the cellular biology of the Apicomplexan protozoa. A multitude of techniques used to investigate PTMs, mostly techniques in MS-based proteomics, are discussed for their ability to uncover relevant biological function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brauch, H., Kishida, T., Glavac, D., Chen, F., Pausch, F., Hofler, H., et al. (1995). Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: Evidence for a founder effect. Human Genetics, 95(5), 551–556.

    CAS  PubMed  Google Scholar 

  2. Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nature Cell Biology, 2(7), 423–427.

    CAS  PubMed  Google Scholar 

  3. De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Computational Biology, 6(6), e1000807.

    PubMed  PubMed Central  Google Scholar 

  4. Khare, S. D., & Fleishman, S. J. (2013). Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Letters, 587(8), 1147–1154.

    CAS  PubMed  Google Scholar 

  5. Huang, P. S., Love, J. J., & Mayo, S. L. (2007). A de novo designed protein protein interface. Protein Science, 16(12), 2770–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goncearenco, A., Shoemaker, B. A., Zhang, D., Sarychev, A., & Panchenko, A. R. (2014). Coverage of protein domain families with structural protein-protein interactions: Current progress and future trends. Progress in Biophysics and Molecular Biology, 116(2–3), 187–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dutta, S., Burkhardt, K., Young, J., Swaminathan, G. J., Matsuura, T., Henrick, K., et al. (2009). Data deposition and annotation at the worldwide protein data bank. Molecular Biotechnology, 42(1), 1–13.

    CAS  PubMed  Google Scholar 

  8. Venkatesan, K., Rual, J. F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-Kishikawa, T., et al. (2009). An empirical framework for binary interactome mapping. Nature Methods, 6(1), 83–90.

    CAS  PubMed  Google Scholar 

  9. Stumpf, M. P., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., et al. (2008). Estimating the size of the human interactome. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6959–6964.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, C. H., Chen, T. C., Chau, G. Y., Jan, Y. H., Chen, C. H., Hsu, C. N., et al. (2013). Analysis of protein-protein interactions in cross-talk pathways reveals CRKL protein as a novel prognostic marker in hepatocellular carcinoma. Molecular & Cellular Proteomics, 12(5), 1335–1349.

    CAS  Google Scholar 

  11. Kestler, H. A., & Kuhl, M. (2008). From individual Wnt pathways towards a Wnt signalling network. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1495), 1333–1347.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: Intertwining molecular networks. Nature Reviews. Molecular Cell Biology, 10(9), 609–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rual, J.-F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. (2005). Towards a proteome-scale map of the human protein–protein interaction network. Nature, 437(7062), 1173–1178.

    CAS  PubMed  Google Scholar 

  14. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., et al. (2005). A human protein-protein interaction network: A resource for annotating the proteome. Cell, 122(6), 957–968.

    CAS  PubMed  Google Scholar 

  15. Ewing, R. M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., et al. (2007). Large-scale mapping of human protein-protein interactions by mass spectrometry. Molecular Systems Biology, 3, 89.

    PubMed  PubMed Central  Google Scholar 

  16. Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., et al. (2010). Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. The Journal of Cell Biology, 189(4), 739–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stelzl, U., & Wanker, E. (2006). The value of high quality protein–protein interaction networks for systems biology. Current Opinion in Chemical Biology, 10(6), 551–558.

    CAS  PubMed  Google Scholar 

  18. Ramirez, F., Schlicker, A., Assenov, Y., Lengauer, T., & Albrecht, M. (2007). Computational analysis of human protein interaction networks. Proteomics, 7(15), 2541–2552.

    CAS  PubMed  Google Scholar 

  19. Keskin, O., Tuncbag, N., & Gursoy, A. (2016). Predicting protein-protein interactions from the molecular to the proteome level. Chemical Reviews, 116(8), 4884–4909.

    CAS  PubMed  Google Scholar 

  20. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., & Darie, C. C. (2013). Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557.

    CAS  PubMed  Google Scholar 

  21. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt, K., & Darie, C. C. (2014). Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71(2), 205–228.

    CAS  PubMed  Google Scholar 

  22. Berggard, T., Linse, S., & James, P. (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics, 7(16), 2833–2842.

    PubMed  Google Scholar 

  23. Nooren, I. M., & Thornton, J. M. (2003). Diversity of protein-protein interactions. The EMBO Journal, 22(14), 3486–3492.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prieto, C., & De Las Rivas, J. (2010). Structural domain-domain interactions: Assessment and comparison with protein-protein interaction data to improve the interactome. Proteins, 78(1), 109–117.

    CAS  PubMed  Google Scholar 

  25. Snider, J., Kotlyar, M., Saraon, P., Yao, Z., Jurisica, I., & Stagljar, I. (2015). Fundamentals of protein interaction network mapping. Molecular Systems Biology, 11(12), 848.

    PubMed  PubMed Central  Google Scholar 

  26. Berlow, R. B., Dyson, H. J., & Wright, P. E. (2015). Functional advantages of dynamic protein disorder. FEBS Letters, 589(19 Pt A), 2433–2440.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fields, S., & Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature, 340(6230), 245–246.

    CAS  PubMed  Google Scholar 

  28. Hamdi, A., & Colas, P. (2012). Yeast two-hybrid methods and their applications in drug discovery. Trends in Pharmacological Sciences, 33(2), 109–118.

    CAS  PubMed  Google Scholar 

  29. Ferro, E., & Trabalzini, L. (2013). The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. Plant Molecular Biology, 83(4–5), 287–301.

    CAS  PubMed  Google Scholar 

  30. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623–627.

    CAS  PubMed  Google Scholar 

  31. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4569–4574.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sprinzak, E., Sattath, S., & Margalit, H. (2003). How reliable are experimental protein–protein interaction data? Journal of Molecular Biology, 327(5), 919–923.

    CAS  PubMed  Google Scholar 

  33. Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews. Drug Discovery, 5(12), 993–996.

    CAS  PubMed  Google Scholar 

  34. Zhang, Y., Gao, P., & Yuan, J. S. (2010). Plant protein-protein interaction network and interactome. Current Genomics, 11(1), 40–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gisler, S. M., Kittanakom, S., Fuster, D., Wong, V., Bertic, M., Radanovic, T., et al. (2008). Monitoring protein-protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Molecular & Cellular Proteomics, 7(7), 1362–1377.

    CAS  Google Scholar 

  36. Snider, J., Kittanakom, S., Damjanovic, D., Curak, J., Wong, V., & Stagljar, I. (2010). Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nature Protocols, 5(7), 1281–1293.

    CAS  PubMed  Google Scholar 

  37. Petschnigg, J., Snider, J., & Stagljar, I. (2011). Interactive proteomics research technologies: Recent applications and advances. Current Opinion in Biotechnology, 22(1), 50–58.

    CAS  PubMed  Google Scholar 

  38. Paumi, C. M., Menendez, J., Arnoldo, A., Engels, K., Iyer, K. R., Thaminy, S., et al. (2007). Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid analysis. Molecular Cell, 26(1), 15–25.

    CAS  PubMed  Google Scholar 

  39. Deribe, Y. L., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M. H. H., Kalaidzidis, Y., et al. (2009). Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Science Signaling, 2(102), ra84.

    PubMed  Google Scholar 

  40. Snider, J., Hanif, A., Lee, M. E., Jin, K., Yu, A. R., Graham, C., et al. (2013). Mapping the functional yeast ABC transporter interactome. Nature Chemical Biology, 9(9), 565–572.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Broder, Y. C., Katz, S., & Aronheim, A. (1998). The ras recruitment system, a novel approach to the study of protein-protein interactions. Current Biology, 8(20), 1121–1124.

    CAS  PubMed  Google Scholar 

  42. Egea-Cortines, M., Saedler, H., & Sommer, H. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. The EMBO Journal, 18(19), 5370–5379.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brent, R., & Finley Jr., R. L. (1997). Understanding gene and allele function with two-hybrid methods. Annual Review of Genetics, 31, 663–704.

    CAS  PubMed  Google Scholar 

  44. Causier, B., & Davies, B. (2002). Analysing protein-protein interactions with the yeast two-hybrid system. Plant Molecular Biology, 50(6), 855–870.

    CAS  PubMed  Google Scholar 

  45. Dube, D. H., Li, B., Greenblatt, E. J., Nimer, S., Raymond, A. K., & Kohler, J. J. (2010). A two-hybrid assay to study protein interactions within the secretory pathway. PLoS One, 5(12), e15648.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Petschnigg, J., Groisman, B., Kotlyar, M., Taipale, M., Zheng, Y., Kurat, C. F., et al. (2014). The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nature Methods, 11(5), 585–592.

    CAS  PubMed  Google Scholar 

  47. Lievens, S., Gerlo, S., Lemmens, I., De Clercq, D. J., Risseeuw, M. D., Vanderroost, N., et al. (2014). Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor. Molecular & Cellular Proteomics, 13(12), 3332–3342.

    CAS  Google Scholar 

  48. Ulrichts, P., Lemmens, I., Lavens, D., Beyaert, R., & Tavernier, J. (2009). MAPPIT (mammalian protein-protein interaction trap) analysis of early steps in toll-like receptor signalling. Methods in Molecular Biology (Clifton, N.J.), 517, 133–144.

    CAS  Google Scholar 

  49. Phee, B.-K., Shin, D. H., Cho, J.-H., Kim, S.-H., Kim, J.-I., Lee, Y.-H., et al. (2006). Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics, 6(12), 3671–3680.

    CAS  PubMed  Google Scholar 

  50. Monti, M., Orru, S., Pagnozzi, D., & Pucci, P. (2005). Interaction proteomics. Bioscience Reports, 25(1–2), 45–56.

    CAS  PubMed  Google Scholar 

  51. Hayes, S., Malacrida, B., Kiely, M., & Kiely, P. A. (2016). Studying protein-protein interactions: Progress, pitfalls and solutions. Biochemical Society Transactions, 44(4), 994–1004.

    CAS  PubMed  Google Scholar 

  52. Miernyk, J. A., & Thelen, J. J. (2008). Biochemical approaches for discovering protein-protein interactions. The Plant Journal, 53(4), 597–609.

    CAS  PubMed  Google Scholar 

  53. Forler, D., Kocher, T., Rode, M., Gentzel, M., Izaurralde, E., & Wilm, M. (2003). An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nature Biotechnology, 21(1), 89–92.

    CAS  PubMed  Google Scholar 

  54. Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576–1590.

    CAS  PubMed  Google Scholar 

  55. Smirle, J., Au, C. E., Jain, M., Dejgaard, K., Nilsson, T., & Bergeron, J. (2013). Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics. Cold Spring Harbor Perspectives in Biology, 5(1), a015073.

    PubMed  PubMed Central  Google Scholar 

  56. Gingras, A. C., Gstaiger, M., Raught, B., & Aebersold, R. (2007). Analysis of protein complexes using mass spectrometry. Nature Reviews. Molecular Cell Biology, 8(8), 645–654.

    CAS  PubMed  Google Scholar 

  57. Back, J. W., de Jong, L., Muijsers, A. O., & de Koster, C. G. (2003). Chemical cross-linking and mass spectrometry for protein structural modeling. Journal of Molecular Biology, 331(2), 303–313.

    CAS  PubMed  Google Scholar 

  58. Barrios-Rodiles, M., Brown, K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science (New York, N.Y.), 307(5715), 1621–1625.

    CAS  Google Scholar 

  59. Blasche, S., & Koegl, M. (2013). Analysis of protein-protein interactions using LUMIER assays. Methods in Molecular Biology (Clifton, N.J.), 1064, 17–27.

    CAS  Google Scholar 

  60. Berkowitz, S. A. (2006). Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. The AAPS Journal, 8(3), E590–E605.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Philo, J. S. (2006). Is any measurement method optimal for all aggregate sizes and types? The AAPS Journal, 8(3), E564–E571.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, J., Andya, J. D., & Shire, S. J. (2006). A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. The AAPS Journal, 8(3), E580–E589.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Howlett, G. J., Minton, A. P., & Rivas, G. (2006). Analytical ultracentrifugation for the study of protein association and assembly. Current Opinion in Chemical Biology, 10(5), 430–436.

    CAS  PubMed  Google Scholar 

  64. Minton, A. P. (2000). Quantitative characterization of reversible macromolecular associations via sedimentation equilibrium: An introduction. Experimental & Molecular Medicine, 32(1), 1–5.

    CAS  Google Scholar 

  65. Correia, J. J. (2000). Analysis of weight average sedimentation velocity data. Methods in Enzymology, 321, 81–100.

    CAS  PubMed  Google Scholar 

  66. Dam, J., & Schuck, P. (2004). Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods in Enzymology, 384, 185–212.

    CAS  PubMed  Google Scholar 

  67. Cole, J. L. (2010). Analysis of PKR activation using analytical ultracentrifugation. Macromolecular Bioscience, 10(7), 703–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vistica, J., Dam, J., Balbo, A., Yikilmaz, E., Mariuzza, R. A., Rouault, T. A., et al. (2004). Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Analytical Biochemistry, 326(2), 234–256.

    CAS  PubMed  Google Scholar 

  69. Ghirlando, R. (2011). The analysis of macromolecular interactions by sedimentation equilibrium. Methods, 54(1), 145–156.

    CAS  PubMed  Google Scholar 

  70. Brautigam, C. A. (2011). Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods, 54(1), 4–15.

    CAS  PubMed  Google Scholar 

  71. Miyashita, T. (2015). Confocal microscopy for intracellular co-localization of proteins. Methods in Molecular Biology (Clifton, N.J.), 1278, 515–526.

    CAS  Google Scholar 

  72. Ma, L., Yang, F., & Zheng, J. (2014). Application of fluorescence resonance energy transfer in protein studies. Journal of Molecular Structure, 1077, 87–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boute, N., Jockers, R., & Issad, T. (2002). The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends in Pharmacological Sciences, 23(8), 351–354.

    CAS  PubMed  Google Scholar 

  74. Sun, Y., Day, R. N., & Periasamy, A. (2011). Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nature Protocols, 6(9), 1324–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hamdan, F. F., Percherancier, Y., Breton, B., Bouvier, M. (2006). Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Current Protocols in Neuroscience, Chapter 5, Unit 5.23.

    Google Scholar 

  76. Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, X. E., Cui, Z., & Wang, D. (2016). Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosensors & Bioelectronics, 76, 243–250.

    CAS  Google Scholar 

  78. Hu, C. D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 9(4), 789–798.

    CAS  PubMed  Google Scholar 

  79. Miller, K. E., Kim, Y., Huh, W. K., & Park, H. O. (2015). Bimolecular fluorescence complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. Journal of Molecular Biology, 427(11), 2039–2055.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal, 16(9), 1055–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., & Webb, W. W. (1976). Dynamics of fluorescence marker concentration as a probe of mobility. Biophysical Journal, 16(11), 1315–1329.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ishikawa-Ankerhold, H. C., Ankerhold, R., & Drummen, G. P. (2012). Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules (Basel, Switzerland), 17(4), 4047–4132.

    CAS  Google Scholar 

  83. Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 196(6), 801–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lambert, J. P., Tucholska, M., Go, C., Knight, J. D., & Gingras, A. C. (2015). Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. Journal of Proteomics, 118, 81–94.

    CAS  PubMed  Google Scholar 

  85. Koos, B., Andersson, L., Clausson, C. M., Grannas, K., Klaesson, A., Cane, G., et al. (2014). Analysis of protein interactions in situ by proximity ligation assays. Current Topics in Microbiology and Immunology, 377, 111–126.

    CAS  PubMed  Google Scholar 

  86. Chen, T. C., Lin, K. T., Chen, C. H., Lee, S. A., Lee, P. Y., Liu, Y. W., et al. (2014). Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network. Journal of Proteome Research, 13(12), 5339–5346.

    CAS  PubMed  Google Scholar 

  87. Frei, A. P., Moest, H., Novy, K., & Wollscheid, B. (2013). Ligand-based receptor identification on living cells and tissues using TRICEPS. Nature Protocols, 8(7), 1321–1336.

    PubMed  Google Scholar 

  88. Kerr, J. S., & Wright, G. J. (2012). Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions. Journal of Visualized Experiments, (61), e3881.

    Google Scholar 

  89. Stephen, A. G., Esposito, D., Bagni, R. K., & McCormick, F. (2014). Dragging ras back in the ring. Cancer Cell, 25(3), 272–281.

    CAS  PubMed  Google Scholar 

  90. McCormick, F. (2015). KRAS as a therapeutic target. Clinical Cancer Research, 21(8), 1797–1801.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vandamme, D., Fitzmaurice, W., Kholodenko, B., & Kolch, W. (2013). Systems medicine: Helping us understand the complexity of disease. QJM, 106(10), 891–895.

    CAS  PubMed  Google Scholar 

  92. Orchard, S., & Kerrien, S. (2010). Molecular interactions and data standardisation. Methods in Molecular Biology (Clifton, N.J.), 604, 309–318.

    CAS  Google Scholar 

  93. Kerrien, S., Orchard, S., Montecchi-Palazzi, L., Aranda, B., Quinn, A. F., Vinod, N., et al. (2007). Broadening the horizon—Level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biology, 5, 44.

    PubMed  PubMed Central  Google Scholar 

  94. Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., & Eisenberg, D. (2004). The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 32(Database issue), D449–D451.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bader, G. D., Cary, M. P., & Sander, C. (2006). Pathguide: A pathway resource list. Nucleic Acids Research, 34(Database issue), D504–D506.

    CAS  PubMed  Google Scholar 

  96. Orchard, S., Kerrien, S., Abbani, S., Aranda, B., Bhate, J., Bidwell, S., et al. (2012). Protein interaction data curation: The International Molecular Exchange (IMEx) consortium. Nature Methods, 9(4), 345–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Aranda, B., Blankenburg, H., Kerrien, S., Brinkman, F. S., Ceol, A., Chautard, E., et al. (2011). PSICQUIC and PSISCORE: Accessing and scoring molecular interactions. Nature Methods, 8(7), 528–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(Database issue), D447–D452.

    CAS  PubMed  Google Scholar 

  99. Zahiri, J., Bozorgmehr, J. H., & Masoudi-Nejad, A. (2013). Computational prediction of protein-protein interaction networks: Algorithms and resources. Current Genomics, 14(6), 397–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., & Cesareni, G. (2002). MINT: A Molecular INTeraction database. FEBS Letters, 513(1), 135–140.

    CAS  PubMed  Google Scholar 

  101. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., et al. (2004). IntAct: An open source molecular interaction database. Nucleic Acids Research, 32(Suppl_1), D452–D455.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mewes, H. W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., et al. (2002). MIPS: A database for genomes and protein sequences. Nucleic Acids Research, 30(1), 31–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Xenarios, I., Salwínski, L., Duan, X. J., Higney, P., Kim, S.-M., & Eisenberg, D. (2002). DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1), 303–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Salwinski, L., & Eisenberg, D. (2003). Computational methods of analysis of protein-protein interactions. Current Opinion in Structural Biology, 13(3), 377–382.

    CAS  PubMed  Google Scholar 

  105. Chatr-Aryamontri, A., Breitkreutz, B. J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., et al. (2015). The BioGRID interaction database: 2015 update. Nucleic Acids Research, 43(Database issue), D470–D478.

    CAS  PubMed  Google Scholar 

  106. Zhang, Q. C., Petrey, D., Deng, L., Qiang, L., Shi, Y., Thu, C. A., et al. (2012). Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature, 490(7421), 556–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126(5), 855–867.

    CAS  PubMed  Google Scholar 

  108. Walsh, C. T., Garneau-Tsodikova, S., & Gatto Jr., G. J. (2005). Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie (International ed. in English), 44(45), 7342–7372.

    CAS  Google Scholar 

  109. Witze, E. S., Old, W. M., Resing, K. A., & Ahn, N. G. (2007). Mapping protein post-translational modifications with mass spectrometry. Nature Methods, 4(10), 798–806.

    CAS  PubMed  Google Scholar 

  110. Doll, S., & Burlingame, A. L. (2015). Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chemical Biology, 10(1), 63–71.

    CAS  PubMed  Google Scholar 

  111. Mertins, P., Qiao, J. W., Patel, J., Udeshi, N. D., Clauser, K. R., Mani, D. R., et al. (2013). Integrated proteomic analysis of post-translational modifications by serial enrichment. Nature Methods, 10(7), 634–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Swaney, D. L., & Villen, J. (2016). Proteomic analysis of protein posttranslational modifications by mass spectrometry. Cold Spring Harbor Protocols, 2016(3), pdb.top077743.

    PubMed  Google Scholar 

  113. Mann, M., & Jensen, O. N. (2003). Proteomic analysis of post-translational modifications. Nature Biotechnology, 21(3), 255–261.

    CAS  PubMed  Google Scholar 

  114. Seo, J., & Lee, K. J. (2004). Post-translational modifications and their biological functions: Proteomic analysis and systematic approaches. Journal of Biochemistry and Molecular Biology, 37(1), 35–44.

    CAS  PubMed  Google Scholar 

  115. Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2014). Mass spectrometric analysis of post-translational modifications (PTMs) and protein-protein interactions (PPIs). Advances in Experimental Medicine and Biology, 806, 205–235.

    PubMed  Google Scholar 

  116. Malik, R., Dulla, K., Nigg, E. A., & Korner, R. (2010). From proteome lists to biological impact—Tools and strategies for the analysis of large MS data sets. Proteomics, 10(6), 1270–1283.

    CAS  PubMed  Google Scholar 

  117. Cobbold, S. A., Santos, J. M., Ochoa, A., Perlman, D. H., & Llinas, M. (2016). Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite. Scientific Reports, 6, 19722.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jeffers, V., & Sullivan, W. J. (2012). Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryotic Cell, 11(6), 735–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue, B., Jeffers, V., Sullivan, W. J., & Uversky, V. N. (2013). Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Molecular BioSystems, 9(4), 645–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Miao, J., Lawrence, M., Jeffers, V., Zhao, F., Parker, D., Ge, Y., et al. (2013). Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development. Molecular Microbiology, 89(4), 660–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yakubu, R. R., Silmon de Monerri, N. C., Nieves, E., Kim, K., & Weiss, L. M. (2017). Comparative monomethylarginine proteomics suggests that PRMT1 is a significant contributor to arginine monomethylation in Toxoplasma gondii. Molecular & Cellular Proteomics, 16(4), 567–580.

    CAS  Google Scholar 

  122. Zeeshan, M., Kaur, I., Joy, J., Saini, E., Paul, G., Kaushik, A., et al. (2017). Proteomic identification and analysis of arginine-methylated proteins of Plasmodium falciparum at asexual blood stages. Journal of Proteome Research, 16(2), 368–383.

    CAS  PubMed  Google Scholar 

  123. Kaur, I., Zeeshan, M., Saini, E., Kaushik, A., Mohmmed, A., Gupta, D., et al. (2016). Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages. Scientific Reports, 6, 35432.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Caballero, M. C., Alonso, A. M., Deng, B., Attias, M., de Souza, W., & Corvi, M. M. (2016). Identification of new palmitoylated proteins in Toxoplasma gondii. Biochimica et Biophysica Acta, 1864(4), 400–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Foe, I. T., Child, M. A., Majmudar, J. D., Krishnamurthy, S., van der Linden, W. A., Ward, G. E., et al. (2015). Global analysis of palmitoylated proteins in Toxoplasma gondii. Cell Host & Microbe, 18(4), 501–511.

    CAS  Google Scholar 

  126. Jones, M. L., Collins, M. O., Goulding, D., Choudhary, J. S., & Rayner, J. C. (2012). Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host & Microbe, 12(2), 246–258.

    CAS  Google Scholar 

  127. Treeck, M., Sanders, J. L., Elias, J. E., & Boothroyd, J. C. (2011). The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host & Microbe, 10(4), 410–419.

    CAS  Google Scholar 

  128. Alam, M. M., Solyakov, L., Bottrill, A. R., Flueck, C., Siddiqui, F. A., Singh, S., et al. (2015). Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nature Communications, 6, 7285.

    PubMed  Google Scholar 

  129. Lasonder, E., Green, J. L., Grainger, M., Langsley, G., & Holder, A. A. (2015). Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites. Proteomics, 15(15), 2716–2729. https://doi.org/10.1002/pmic.201400508. PMID: 25886026.

    Article  CAS  PubMed  Google Scholar 

  130. Lasonder, E., Green, J. L., Camarda, G., Talabani, H., Holder, A. A., Langsley, G., et al. (2012). The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. Journal of Proteome Research, 11(11), 5323–5337. https://doi.org/10.1021/pr300557m. PMID: 23025827.

    Article  CAS  PubMed  Google Scholar 

  131. Solyakov, L., Halbert, J., Alam, M. M., Semblat, J. P., Dorin-Semblat, D., Reininger, L., et al. (2011). Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nature Communications, 2, 565. https://doi.org/10.1038/ncomms1558.

    Article  PubMed  Google Scholar 

  132. Pease, B. N., Huttlin, E. L., Jedrychowski, M. P., Talevich, E., Harmon, J., Dillman, T., et al. (2013). Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. Journal of Proteome Research, 12(9), 4028–4045.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. de Monerri, S., Natalie, C., Yakubu, R. R., Chen, A. L., Bradley, P. J., Nieves, E., et al. (2015). The ubiquitin proteome of Toxoplasma gondii reveals roles for protein ubiquitination in cell-cycle transitions. Cell Host & Microbe, 18(5), 621–633.

    Google Scholar 

  134. Ponts, N., Saraf, A., Chung, D. W., Harris, A., Prudhomme, J., Washburn, M. P., et al. (2011). Unraveling the ubiquitome of the human malaria parasite. The Journal of Biological Chemistry, 286(46), 40320–40330.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Issar, N., Roux, E., Mattei, D., & Scherf, A. (2008). Identification of a novel post-translational modification in Plasmodium falciparum: Protein sumoylation in different cellular compartments. Cellular Microbiology, 10(10), 1999–2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Braun, L., Cannella, D., Pinheiro, A. M., Kieffer, S., Belrhali, H., Garin, J., et al. (2009). The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii. International Journal for Parasitology, 39(1), 81–90.

    CAS  PubMed  Google Scholar 

  137. Li, X., Hu, X., Wan, Y., Xie, G., Li, X., Chen, D., et al. (2014). Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii. Journal of Proteome Research, 13(12), 6087–6095. https://doi.org/10.1021/pr500992r.

    Article  CAS  PubMed  Google Scholar 

  138. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3), 635–648.

    CAS  PubMed  Google Scholar 

  139. Elsholz, A. K., Turgay, K., Michalik, S., Hessling, B., Gronau, K., Oertel, D., et al. (2012). Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7451–7456.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Laub, M. T., & Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annual Review of Genetics, 41, 121–145.

    CAS  PubMed  Google Scholar 

  141. Thingholm, T. E., Jorgensen, T. J., Jensen, O. N., & Larsen, M. R. (2006). Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protocols, 1(4), 1929–1935.

    CAS  PubMed  Google Scholar 

  142. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934.

    CAS  Google Scholar 

  143. Braconi Quintaje, S., & Orchard, S. (2008). The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: One small step in manual annotation, one giant leap for full comprehension of genomes. Molecular & Cellular Proteomics, 7(8), 1409–1419.

    Google Scholar 

  144. Jackson, M. D., & Denu, J. M. (2001). Molecular reactions of protein phosphatases—Insights from structure and chemistry. Chemical Reviews, 101(8), 2313–2340.

    CAS  PubMed  Google Scholar 

  145. Guan, K. L., & Dixon, J. E. (1991). Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. The Journal of Biological Chemistry, 266(26), 17026–17030.

    CAS  PubMed  Google Scholar 

  146. Doerig, C., Rayner, J. C., Scherf, A., & Tobin, A. B. (2015). Post-translational protein modifications in malaria parasites. Nature Reviews Microbiology, 13(3), 160–172.

    CAS  PubMed  Google Scholar 

  147. Jacot, D., & Soldati-Favre, D. (2012). Does protein phosphorylation govern host cell entry and egress by the Apicomplexa? International Journal of Medical Microbiology, 302(4–5), 195–202.

    CAS  PubMed  Google Scholar 

  148. Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends in Biochemical Sciences, 21(11), 407–412.

    CAS  PubMed  Google Scholar 

  149. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science (New York, N.Y.), 291(5507), 1304–1351.

    CAS  Google Scholar 

  150. Johnson, L. N., & Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annual Review of Biophysics and Biomolecular Structure, 22, 199–232.

    CAS  PubMed  Google Scholar 

  151. Hunter, T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Molecular Cell, 28(5), 730–738.

    CAS  PubMed  Google Scholar 

  152. Hubbard, M. J., & Cohen, P. (1993). On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences, 18(5), 172–177.

    CAS  PubMed  Google Scholar 

  153. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., & Aebersold, R. (2007). Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nature Methods, 4(3), 231–237.

    CAS  PubMed  Google Scholar 

  154. Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., Veenstra, T. D., & Smith, R. D. (2001). Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Analytical Chemistry, 73(11), 2578–2586.

    CAS  PubMed  Google Scholar 

  155. Knight, Z. A., Schilling, B., Row, R. H., Kenski, D. M., Gibson, B. W., & Shokat, K. M. (2003). Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology, 21(9), 1047–1054.

    CAS  PubMed  Google Scholar 

  156. Oda, Y., Nagasu, T., & Chait, B. T. (2001). Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnology, 19(4), 379–382.

    CAS  PubMed  Google Scholar 

  157. Zhou, H., Watts, J. D., & Aebersold, R. (2001). A systematic approach to the analysis of protein phosphorylation. Nature Biotechnology, 19(4), 375–378.

    CAS  PubMed  Google Scholar 

  158. Bodenmiller, B., Mueller, L. N., Pedrioli, P. G., Pflieger, D., Junger, M. A., Eng, J. K., et al. (2007). An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: Application to Drosophila melanogaster Kc167 cells. Molecular BioSystems, 3(4), 275–286.

    CAS  PubMed  Google Scholar 

  159. Grønborg, M., Kristiansen, T. Z., Stensballe, A., Andersen, J. S., Ohara, O., Mann, M., et al. (2002). A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies. Molecular & Cellular Proteomics, 1(7), 517–527.

    Google Scholar 

  160. Pandey, A., Fernandez, M. M., Steen, H., Blagoev, B., Nielsen, M. M., Roche, S., et al. (2000). Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. The Journal of Biological Chemistry, 275(49), 38633–38639.

    CAS  PubMed  Google Scholar 

  161. Guy, G. R., Philip, R., & Tan, Y. H. (1994). Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: Applications for cell signaling in normal and cancer cells. Electrophoresis, 15(3–4), 417–440.

    CAS  PubMed  Google Scholar 

  162. McLachlin, D. T., & Chait, B. T. (2001). Analysis of phosphorylated proteins and peptides by mass spectrometry. Current Opinion in Chemical Biology, 5(5), 591–602.

    CAS  PubMed  Google Scholar 

  163. Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., et al. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Molecular & Cellular Proteomics, 4(3), 310–327.

    CAS  Google Scholar 

  164. Carr, S. A., Huddleston, M. J., & Annan, R. S. (1996). Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Analytical Biochemistry, 239(2), 180–192.

    CAS  PubMed  Google Scholar 

  165. Bateman, R. H., Carruthers, R., Hoyes, J. B., Jones, C., Langridge, J. I., Millar, A., et al. (2002). A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. Journal of the American Society for Mass Spectrometry, 13(7), 792–803.

    CAS  PubMed  Google Scholar 

  166. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., et al. (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101(33), 12130–12135.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nuhse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2003). Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Molecular & Cellular Proteomics, 2(11), 1234–1243.

    Google Scholar 

  168. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., et al. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology, 20(3), 301–305.

    CAS  PubMed  Google Scholar 

  169. Smith, J. C., & Figeys, D. (2006). Proteomics technology in systems biology. Molecular BioSystems, 2(8), 364–370.

    CAS  PubMed  Google Scholar 

  170. Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B., & Heck, A. J. (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Analytical Chemistry, 76(14), 3935–3943.

    CAS  PubMed  Google Scholar 

  171. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., & Jorgensen, T. J. (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics, 4(7), 873–886.

    CAS  Google Scholar 

  172. Riley, N. M., & Coon, J. J. (2016). Phosphoproteomics in the age of rapid and deep proteome profiling. Analytical Chemistry, 88(1), 74–94.

    CAS  PubMed  Google Scholar 

  173. Wu, J., Shakey, Q., Liu, W., Schuller, A., & Follettie, M. T. (2007). Global profiling of phosphopeptides by titania affinity enrichment. Journal of Proteome Research, 6(12), 4684–4689.

    CAS  PubMed  Google Scholar 

  174. Li, X., Gerber, S. A., Rudner, A. D., Beausoleil, S. A., Haas, W., Villen, J., et al. (2007). Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. Journal of Proteome Research, 6(3), 1190–1197.

    CAS  PubMed  Google Scholar 

  175. Wilson-Grady, J. T., Villen, J., & Gygi, S. P. (2008). Phosphoproteome analysis of fission yeast. Journal of Proteome Research, 7(3), 1088–1097.

    CAS  PubMed  Google Scholar 

  176. Villen, J., Beausoleil, S. A., Gerber, S. A., & Gygi, S. P. (2007). Large-scale phosphorylation analysis of mouse liver. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1488–1493.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhai, B., Villén, J., Beausoleil, S. A., Mintseris, J., & Gygi, S. P. (2008). Phosphoproteome analysis of Drosophila melanogaster embryos. Journal of Proteome Research, 7(4), 1675–1682.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Elias, J. E., Haas, W., Faherty, B. K., & Gygi, S. P. (2005). Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nature Methods, 2(9), 667–675.

    CAS  PubMed  Google Scholar 

  179. Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. The EMBO Journal, 24(19), 3353–3359.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: Structures, functions, mechanisms. Biochimica et Biophysica Acta, 1695(1–3), 55–72.

    CAS  PubMed  Google Scholar 

  181. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.

    CAS  PubMed  Google Scholar 

  182. Bhoj, V. G., & Chen, Z. J. (2009). Ubiquitylation in innate and adaptive immunity. Nature, 458(7237), 430–437.

    CAS  PubMed  Google Scholar 

  183. Qian, S. B., Princiotta, M. F., Bennink, J. R., & Yewdell, J. W. (2006). Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control. The Journal of Biological Chemistry, 281(1), 392–400.

    CAS  PubMed  Google Scholar 

  184. Anania, V. G., Pham, V. C., Huang, X., Masselot, A., Lill, J. R., & Kirkpatrick, D. S. (2014). Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins. Molecular & Cellular Proteomics, 13(1), 145–156.

    CAS  Google Scholar 

  185. Corvi, M. M., Alonso, A. M., & Caballero, M. C. (2012). Protein palmitoylation and pathogenesis in apicomplexan parasites. Journal of Biomedicine & Biotechnology, 2012, 483969.

    Google Scholar 

  186. Martin, B. R., & Cravatt, B. F. (2009). Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods, 6(2), 135–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Wan, J., Roth, A. F., Bailey, A. O., & Davis, N. G. (2007). Palmitoylated proteins: Purification and identification. Nature Protocols, 2(7), 1573–1584.

    CAS  PubMed  Google Scholar 

  188. Fung, C., Beck, J. R., Robertson, S. D., Gubbels, M. J., & Bradley, P. J. (2012). Toxoplasma ISP4 is a central IMC sub-compartment protein whose localization depends on palmitoylation but not myristoylation. Molecular and Biochemical Parasitology, 184(2), 99–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. De Napoli, M. G., de Miguel, N., Lebrun, M., Moreno, S. N., Angel, S. O., & Corvi, M. M. (2013). N-terminal palmitoylation is required for Toxoplasma gondii HSP20 inner membrane complex localization. Biochimica et Biophysica Acta, 1833(6), 1329–1337.

    PubMed  PubMed Central  Google Scholar 

  190. Drisdel, R. C., & Green, W. N. (2004). Labeling and quantifying sites of protein palmitoylation. BioTechniques, 36(2), 276–285.

    CAS  PubMed  Google Scholar 

  191. Yang, W., Di Vizio, D., Kirchner, M., Steen, H., & Freeman, M. R. (2010). Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Molecular & Cellular Proteomics, 9(1), 54–70.

    CAS  Google Scholar 

  192. Naik, R. S., Branch, O. H., Woods, A. S., Vijaykumar, M., Perkins, D. J., Nahlen, B. L., et al. (2000). Glycosylphosphatidylinositol anchors of Plasmodium falciparum: Molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. The Journal of Experimental Medicine, 192(11), 1563–1576.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., et al. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Molecular & Cellular Proteomics, 4(10), 1487–1502.

    CAS  Google Scholar 

  194. Apweiler, R., Hermjakob, H., & Sharon, N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta, 1473(1), 4–8.

    CAS  PubMed  Google Scholar 

  195. Spiro, R. G. (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.

    CAS  PubMed  Google Scholar 

  196. Reis, C. A., Osorio, H., Silva, L., Gomes, C., & David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 63(4), 322–329.

    CAS  PubMed  Google Scholar 

  197. Aggarwal, S. (2010). What’s fueling the biotech engine-2009–2010. Nature Biotechnology, 28(11), 1165–1171.

    CAS  PubMed  Google Scholar 

  198. Kornfeld, R., & Kornfeld, S. (1985). Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry, 54, 631–664.

    CAS  PubMed  Google Scholar 

  199. Stanley, P. (2011). Golgi glycosylation. Cold Spring Harbor Perspectives in Biology, 3(4), a00519.

    Google Scholar 

  200. Halim, A., Brinkmalm, G., Ruetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., et al. (2011). Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11848–11853.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Steentoft, C., Vakhrushev, S. Y., Vester-Christensen, M. B., Schjoldager, K. T., Kong, Y., Bennett, E. P., et al. (2011). Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nature Methods, 8(11), 977–982.

    CAS  PubMed  Google Scholar 

  202. Spiro, R. G. (1969). Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. The Journal of Biological Chemistry, 244(4), 602–612.

    CAS  PubMed  Google Scholar 

  203. Butkinaree, C., Park, K., & Hart, G. W. (2010). O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochimica et Biophysica Acta, 1800(2), 96–106.

    CAS  PubMed  Google Scholar 

  204. Banerjee, S., Robbins, P. W., & Samuelson, J. (2009). Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology, 19(4), 331–336.

    CAS  PubMed  Google Scholar 

  205. Perez-Cervera, Y., Harichaux, G., Schmidt, J., Debierre-Grockiego, F., Dehennaut, V., Bieker, U., et al. (2011). Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: A biochemical and bioinformatic study. Amino Acids, 40, 847–856.

    CAS  PubMed  Google Scholar 

  206. Luo, Q., Upadhya, R., Zhang, H., Madrid-Aliste, C., Nieves, E., Kim, K., et al. (2011). Analysis of the glycoproteome of Toxoplasma gondii using lectin affinity chromatography and tandem mass spectrometry. Microbes and Infection, 13(14–15), 1199–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Luk, F. C., Johnson, T. M., & Beckers, C. J. (2008). N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii. Molecular and Biochemical Parasitology, 157(2), 169–178.

    CAS  PubMed  Google Scholar 

  208. Fauquenoy, S., Morelle, W., Hovasse, A., Bednarczyk, A., Slomianny, C., Schaeffer, C., et al. (2008). Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii—Host cell interactions. Molecular & Cellular Proteomics, 7(5), 891–910.

    CAS  Google Scholar 

  209. Wang, K., Peng, E. D., Huang, A. S., Xia, D., Vermont, S. J., Lentini, G., et al. (2016). Identification of novel O-linked glycosylated Toxoplasma proteins by Vicia villosa lectin chromatography. PLoS One, 11(3), e0150561.

    PubMed  PubMed Central  Google Scholar 

  210. Hunt, J. V., Dean, R. T., & Wolff, S. P. (1988). Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. The Biochemical Journal, 256(1), 205–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V. M., et al. (1994). Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Annals of the New York Academy of Sciences, 738, 447–454.

    CAS  PubMed  Google Scholar 

  212. Paik, W. K., & Kim, S. (1980). Natural occurrence of various methylated amino acid derivatives. In A. Meister (Ed.), Protein methylation. New York: John Wiley & sons.

    Google Scholar 

  213. Ishikawa, Y., & Melville, D. B. (1970). The enzymatic alpha-N-methylation of histidine. The Journal of Biological Chemistry, 245(22), 5967–5973.

    CAS  PubMed  Google Scholar 

  214. Paik, W. K., Paik, D. C., & Kim, S. (2007). Historical review: The field of protein methylation. Trends in Biochemical Sciences, 32(3), 146–152.

    CAS  PubMed  Google Scholar 

  215. Bedford, M. T., & Clarke, S. G. (2009). Protein arginine methylation in mammals: Who, what, and why. Molecular Cell, 33(1), 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang, C., Leffler, S., Thompson, D. H., & Hrycyna, C. A. (2005). A general fluorescence-based coupled assay for S-adenosylmethionine-dependent methyltransferases. Biochemical and Biophysical Research Communications, 331(1), 351–356.

    CAS  PubMed  Google Scholar 

  217. Herrmann, F., Pably, P., Eckerich, C., Bedford, M. T., & Fackelmayer, F. O. (2009). Human protein arginine methyltransferases in vivo—Distinct properties of eight canonical members of the PRMT family. Journal of Cell Science, 122(Pt 5), 667–677.

    CAS  PubMed  Google Scholar 

  218. Molina-Serrano, D., Schiza, V., & Kirmizis, A. (2013). Cross-talk among epigenetic modifications: Lessons from histone arginine methylation. Biochemical Society Transactions, 41(3), 751–759.

    CAS  PubMed  Google Scholar 

  219. Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K., et al. (2008). Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Molecular Cell, 32(2), 221–231.

    CAS  PubMed  Google Scholar 

  220. Sato, N., Maitra, A., Fukushima, N., van Heek, N. T., Matsubayashi, H., Iacobuzio-Donahue, C. A., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.

    CAS  PubMed  Google Scholar 

  221. Balasubramanyam, K., Varier, R. A., Altaf, M., Swaminathan, V., Siddappa, N. B., Ranga, U., et al. (2004). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. The Journal of Biological Chemistry, 279(49), 51163–51171.

    CAS  PubMed  Google Scholar 

  222. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840.

    CAS  Google Scholar 

  223. Wang, J., Dixon, S. E., Ting, L. M., Liu, T. K., Jeffers, V., Croken, M. M., et al. (2014). Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathogens, 10(1), e1003830.

    PubMed  PubMed Central  Google Scholar 

  224. Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews. Molecular Cell Biology, 8(12), 947–956.

    CAS  PubMed  Google Scholar 

  225. Park, J., Chen, Y., Tishkoff, D. X., Peng, C., Tan, M., Dai, L., et al. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Molecular Cell, 50(6), 919–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Rardin, M. J., He, W., Nishida, Y., Newman, J. C., Carrico, C., Danielson, S. R., et al. (2013). SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabolism, 18(6), 920–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Weinert, B. T., Scholz, C., Wagner, S. A., Iesmantavicius, V., Su, D., Daniel, J. A., et al. (2013). Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Reports, 4(4), 842–851.

    CAS  PubMed  Google Scholar 

  228. Hirschey, M. D., & Zhao, Y. (2015). Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Molecular & Cellular Proteomics, 14(9), 2308–2315.

    CAS  Google Scholar 

  229. Radke, J. R., Striepen, B., Guerini, M. N., Jerome, M. E., Roos, D. S., & White, M. W. (2001). Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Molecular and Biochemical Parasitology, 115, 165–175.

    CAS  PubMed  Google Scholar 

  230. Behnke, M. S., Wootton, J. C., Lehmann, M. M., Radke, J. B., Lucas, O., Nawas, J., et al. (2010). Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One, 5(8), e12354.

    PubMed  PubMed Central  Google Scholar 

  231. Conde de Felipe, M. M., Lehmann, M. M., Jerome, M. E., & White, M. W. (2008). Inhibition of Toxoplasma gondii growth by pyrrolidine dithiocarbamate is cell cycle specific and leads to population synchronization. Molecular and Biochemical Parasitology, 157(1), 22–31.

    CAS  PubMed  Google Scholar 

  232. Bassermann, F., Eichner, R., & Pagano, M. (2014). The ubiquitin proteasome system—Implications for cell cycle control and the targeted treatment of cancer. Biochimica et Biophysica Acta, 1843(1), 150–162.

    CAS  PubMed  Google Scholar 

  233. White, M. W., & Suvorova, E. S. (2018). Apicomplexa cell cycles: something old, borrowed, lost, and new. Trends in Parasitology, 34(9), 759–771. https://doi.org/10.1016/j.pt.2018.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  234. Hartmann, J., Hu, K., He, C. Y., Pelletier, L., Roos, D. S., & Warren, G. (2006). Golgi and centrosome cycles in Toxoplasma gondii. Molecular and Biochemical Parasitology, 145(1), 125–127.

    CAS  PubMed  Google Scholar 

  235. Nishi, M., Hu, K., Murray, J. M., & Roos, D. S. (2008). Organellar dynamics during the cell cycle of Toxoplasma gondii. Journal of Cell Science, 121(Pt 9), 1559–1568.

    CAS  PubMed  Google Scholar 

  236. Pelletier, L., Stern, C. A., Pypaert, M., Sheff, D., Ngo, H. M., Roper, N., et al. (2002). Golgi biogenesis in Toxoplasma gondii. Nature, 418(6897), 548–552.

    CAS  PubMed  Google Scholar 

  237. Teixeira, L. K., & Reed, S. I. (2013). Ubiquitin ligases and cell cycle control. Annual Review of Biochemistry, 82, 387–414.

    CAS  PubMed  Google Scholar 

  238. Baker, D. J., Dawlaty, M. M., Galardy, P., & van Deursen, J. M. (2007). Mitotic regulation of the anaphase-promoting complex. Cellular and Molecular Life Sciences, 64(5), 589–600.

    CAS  PubMed  Google Scholar 

  239. Ponts, N., Yang, J., Chung, D. W., Prudhomme, J., Girke, T., Horrocks, P., et al. (2008). Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: A potential strategy to interfere with parasite virulence. PLoS One, 3(6), e2386.

    PubMed  PubMed Central  Google Scholar 

  240. Chick, J. M., Kolippakkam, D., Nusinow, D. P., Zhai, B., Rad, R., Huttlin, E. L., et al. (2015). A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nature Biotechnology, 33(7), 743–749.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yakubu, R.R., Nieves, E., Weiss, L.M. (2019). The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein–Protein Interactions (PPIs). In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_10

Download citation

Publish with us

Policies and ethics