Skip to main content

Patient-Specific Modeling of Pelvic System from MRI for Numerical Simulation: Validation Using a Physical Model

  • Conference paper
  • First Online:
Book cover Computational Biomechanics for Medicine

Abstract

Numerical simulation is useful to help understand the behavior of pelvic system, and eventually to assist the diagnostic and surgery. Patient-specific simulation is expected to optimize the treatment of patients. Despite the requirement of mechanical properties and loading, patient-specific simulation requires first 3D geometry adapted to patient. Manual 3D reconstruction of the patient-specific anatomy is time-consuming and introduces uncertainties. In this paper, we propose an efficient computer-assisted approach to modeling 3D geometries well suited to MRI data. A well-controlled physical model is also proposed, and manufactured, to estimate uncertainties of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samuelsson EC, Victor FT, Tibblin G, Svärdsudd KF (1999) Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am J Obstet Gynecol 180(2):299–305

    Article  Google Scholar 

  2. Swift SE (2000) The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 183(2):277–285

    Article  Google Scholar 

  3. Bump RC, Mattiasson A, Bø K, Brubaker LP, DeLancey JO, Klarskov P, Shull BL, Smith AR (1996) The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol 175(1):10–17

    Article  Google Scholar 

  4. Dell’oro M, Collinet P, Robin G, Rubod C (2013) Multidisciplinary approach for deep endometriosis: interests and organization. Gynecol Obstet Fertil 41(1):58–64

    Article  Google Scholar 

  5. Mayeur O, Witz JF, Lecomte-Grosbras P, Brieu M, Cosson M, Miller K (2016) Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann Biomed Eng 44:202–212

    Article  Google Scholar 

  6. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques SIGGRAPH ‘87, pp 163–169

    Google Scholar 

  7. Shekhar R, Fayyad E, Yagel R, Cornhill JF (1996) Octree-based decimation of marching cubes surfaces. In: Proceedings visualization ‘96, pp 335–342

    Google Scholar 

  8. Paragios N, Chen Y, Faugeras O (2006) Handbook of mathematical models in computer vision. Springer, New York

    Book  Google Scholar 

  9. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  10. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  11. Li B, Acton ST (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  MathSciNet  Google Scholar 

  12. Semin B, Auradou H, François M (2011) Accurate measurement of curvilinear shapes by virtual image correlation. Eur Phys J Appl Phys 56(1):10701

    Article  Google Scholar 

  13. Réthoré J, François M (2014) Curve and boundaries measurement using B-splines and virtual images. Opt Lasers Eng 52:145–155

    Article  Google Scholar 

  14. Jiang Z, Witz JF, Lecomte-Grosbras P, Dequidt J, Duriez C, Cosson M, Cotin S, Brieu M (2015) B-spline based multi-organ detection in magnetic resonance imaging. Strain 51(3):235–247

    Article  Google Scholar 

  15. Jiang Z, Witz JF, Lecomte-Grosbras P, Dequidt J, Cotin S, Rubod C, Duriez C, Brieu M (2017) Multiorgan motion tracking in dynamic magnetic resonance imaging for evaluation of pelvic system mobility and shear strain. Strain 53(2):e12224

    Article  Google Scholar 

  16. Bay T, Chambelland JC, Raffin R, Daniel M, Bellemare ME (2011) Geometric modeling of pelvic organs. Conf Proc IEEE Eng Med Biol Soc 2011:4329–4332

    Google Scholar 

  17. Vallet A, Witz JF, Rubod C, Brieu M, Cosson M (2011) Simulation of pelvic mobility: topology optimization of ligamentous system. Comput Methods Biomech Biomed Eng 14(1):159–163

    Google Scholar 

  18. Mayeur O, Lamblin G, Lecomte-Grosbras P, Brieu M, Rubod C, Cosson M (2014) FE simulation for the understanding of the median cystocele prolapse occurrence. In: Bello F, Cotin S (eds) Biomedical simulation, vol 8789, pp 220–227

    Chapter  Google Scholar 

  19. Kikinis R, Pieper SD, Vosburgh K (2014) 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging image-guided therapy, vol 3(19), pp 277–289

    Google Scholar 

  20. Kamina P (2014) Anatomie clinique: Tome 4, Organes urinaires et génitaux, pelvis, coupes du tronc, 3rd edn. Maloine, Paris

    Google Scholar 

  21. Delancey JO (1992) Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol 166(6):1717–1724

    Article  Google Scholar 

  22. Piegl L, Tiller W (1995) The NURBS book. Monographs in visual communication. Springer, Basel

    MATH  Google Scholar 

  23. Buhmann MD (2003) Radial basis functions: theory and implementations. (Cambridge monographs on applied and computational mathematics). Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Wendland H (2005) Scattered data approximation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B (2010) Polygon mesh processing. CRC Press Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  26. Manzoni A, Quarteroni A, Rozza G (2012) Model reduction techniques for fast blood flow simulation in parametrized geometries. Int J Numer Methods Biomed Eng 28(6–7):604–625

    Article  MathSciNet  Google Scholar 

  27. Mongillo M (2011) Choosing basis functions and shape parameters for radial basis function methods. SIAM Undergrad Res Online 4:2–6

    Article  Google Scholar 

  28. PyGeM: Python Geometrical Morphing. Available at: https://github.com/mathLab/PyGeM

  29. Tezzele M, Salmoiraghi F, Mola A, Rozza G (2017) Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. arXiv preprint arXiv:1709.03298

    Google Scholar 

  30. Jeanditgautier E, Mayeur O, Brieu M, Lamblin G, Rubod C, Cosson M (2016) Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a biomechanical model of the pelvic system. Int Urogynecol J 27(6):951–957

    Article  Google Scholar 

  31. Mayeur O, Jeanditgautier E, Witz JF, Lecomte-Grosbras P, Cosson M, Rubod C, Brieu M (2017) Evaluation of strains on levator ani muscle: damage induced during delivery for a prediction of patient risks. In: Computational biomechanics for medicine. Springer, Cham, pp 135–146

    Chapter  Google Scholar 

  32. Lepage J, Cosson M, Mayeur O, Brieu M, Rubod C (2016) Pedagogical childbirth simulators: utility in obstetrics. Eur J Obstet Gynecol Reprod Biol 197:41–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z. et al. (2020). Patient-Specific Modeling of Pelvic System from MRI for Numerical Simulation: Validation Using a Physical Model. In: Nash, M., Nielsen, P., Wittek, A., Miller, K., Joldes, G. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-15923-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15923-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15922-1

  • Online ISBN: 978-3-030-15923-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics