Skip to main content

Biomechanical Simulation of Vaginal Childbirth: The Colors of the Pelvic Floor Muscles

  • Conference paper
  • First Online:
Book cover Computational Biomechanics for Medicine

Abstract

Childbirth-related trauma is a recurrent and widespread topic due to the disorders it can trigger, such as urinary and/or anal incontinence, and pelvic organ prolapse, affecting women at various levels. Pelvic floor dysfunction often results from weakening or direct damage to the pelvic floor muscles (PFM) or connective tissue, and vaginal delivery is considered the primary risk factor. Elucidating the normal labor mechanisms and the impact of vaginal delivery in PFM can lead to the development of preventive and therapeutic strategies to minimize the most common injuries. By providing some understanding of the function of the pelvic floor during childbirth, the existing biomechanical models attempt to respond to this problem. These models have been used to estimate the mechanical changes on PFM during delivery, to analyze fetal descent, the effect of the fetal head molding, and delivery techniques that potentially contribute to facilitating labor and reducing the risk of muscle injury.

Biomechanical models of childbirth should be sufficiently well-informed and functional for personalized planning of birth and obstetric interventions. Some challenges to be addressed with a focus on customization will be discussed including the in vivo acquisition of individual-specific pelvic floor mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman S, Blomquist J, Nugent J et al (2012) Pelvic muscle strength after childbirth. Obstet Gynecol 120:1021–1028. https://doi.org/10.1097/AOG.0b013e318265de39

    Article  Google Scholar 

  2. Haylen BT, de Ridder D, Freeman RM et al (2010) An international urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol Urodyn 29:4–20. https://doi.org/10.1002/nau.20798

    Article  Google Scholar 

  3. Wu JM, Kawasaki A, Hundley AF et al (2011) Predicting the number of women who will undergo incontinence and prolapse surgery, 2010 to 2050. Am J Obstet Gynecol 205:1–5. https://doi.org/10.1016/j.ajog.2011.03.046

    Article  Google Scholar 

  4. Kiyosaki K, Ackerman L, Histed S et al (2012) Patient understanding of pelvic floor disorders: what women want to know. Female Pelvic Med Reconstr Surg 18:137–142. https://doi.org/10.1097/SPV.0b013e318254f09c. Patient

    Article  Google Scholar 

  5. Wu MP, Wu CJ, Weng SF (2015) The choice of reoperation after primary surgeries for uterine prolapse: a nationwide study. Gynecol Minim Invasive Ther 4:120–125. https://doi.org/10.1016/j.gmit.2015.02.002

    Article  Google Scholar 

  6. De Souza A, Dwyer P, Charity M et al (2015) The effects of mode delivery on postpartum sexual function: a prospective study. BJOG Int J Obstet Gynaecol 122:1410–1418. https://doi.org/10.1111/1471-0528.13331

    Article  Google Scholar 

  7. Rempen A, Kraus M (1991) Pressures on the fetal head during normal labor. J Perinat Med 19:199–206. https://doi.org/10.1515/jpme.1991.19.3.199

    Article  Google Scholar 

  8. Yan X, Kruger J, Nielsen P, Nash M (2015) Effects of fetal head shape variation on the second stage of labour. J Biomech 48(9):1593–1599. https://doi.org/10.1016/j.jbiomech.2015.02.0629

    Article  Google Scholar 

  9. Parente MP, Natal Jorge RM, Mascarenhas T et al (2010) Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol 203:217.e1–217.e6. https://doi.org/10.1016/j.ajog.2010.03.038

    Article  Google Scholar 

  10. Silva MET, Oliveira D, Roza TH et al (2015) Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. J Biomech 48(9):1600–1605. https://doi.org/10.1016/j.jbiomech.2015.02.032

    Article  Google Scholar 

  11. Cunningham F, Leveno K, Bloom S et al (2018) Williams obstetrics, 25th edn. McGraw-Hill Education/Medical, Pennsylvania

    Google Scholar 

  12. Noakes KF, Pullan AJ, Bissett IP, Cheng LK (2008) Subject specific finite elasticity simulations of the pelvic floor. J Biomech 41:3060–3065. https://doi.org/10.1016/j.jbiomech.2008.06.037

    Article  Google Scholar 

  13. Silva MET, Parente MPL, Brandão S et al (2018) Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method. J Biomech 71:100–110. https://doi.org/10.1016/j.jbiomech.2018.01.033

    Article  Google Scholar 

  14. Silva MET, Brandão S, Parente MPL et al (2017) Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Comput Methods Biomech Biomed Engin 5842:1–11. https://doi.org/10.1080/10255842.2017.130454215

    Article  Google Scholar 

  15. Martins JAC, Pires EB, Salvado R, Dinis PB (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151:419–433. https://doi.org/10.1016/S0045-7825(97)00162-X

    Article  MATH  Google Scholar 

  16. Roza TH, Brandão S, Oliveira D et al (2015) Football practice and urinary incontinence: relation between morphology, function and biomechanics. J Biomech 48:1587–1592. https://doi.org/10.1016/j.jbiomech.2015.03.013

    Article  Google Scholar 

  17. Saleme CS, Parente MPL, Natal Jorge RM et al (2011) An approach on determining the displacements of the pelvic floor during voluntary contraction using numerical simulation and MRI. Comput Methods Biomech Biomed Engin 14:365–370. https://doi.org/10.1080/10255842.2010.482045

    Article  Google Scholar 

  18. Parente MP, Natal Jorge R, Mascarenhas T et al (2009) The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech 42:1301–1306. https://doi.org/10.1016/j.jbiomech.2009.03.011

    Article  Google Scholar 

  19. Parente MP, Natal Jorge R, Mascarenhas T, Silva-Filho A (2010) The influence of pelvic muscle activation during vaginal delivery. Obstet Gynecol 115:804–808. https://doi.org/10.1097/AOG.0b013e3181d534cd

    Article  Google Scholar 

  20. Crisfield M (2001) Non-linear finite element analysis of solids and structures, volume 2 - advanced topics. Wiley, London

    Google Scholar 

  21. Abramowitch SD, Feola A, Jallah Z, Moalli PA (2009) Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 144:S146–S158. https://doi.org/10.1016/j.ejogrb.2009.02.022

    Article  Google Scholar 

  22. Cosson M, Lambaudie E, Boukerrou M et al (2004) A biomechanical study of the strength of vaginal tissues: results on 16 post-menopausal patients presenting with genital prolapse. Eur J Obstet Gynecol Reprod Biol 112:201–205. https://doi.org/10.1016/S0301-2115(03)00333-6

    Article  Google Scholar 

  23. Cosson M, Boukerrou M, Lacaze S et al (2003) A study of pelvic ligament strength. Eur J Obstet Gynecol Reprod Biol 109:80–87. https://doi.org/10.1016/S0301-2115(02)00487-6

    Article  Google Scholar 

  24. Lei L, Song Y, Chen R (2007) Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. Int Urogynecol J Pelvic Floor Dysfunct 18:603–607. https://doi.org/10.1007/s00192-006-0214-7

    Article  Google Scholar 

  25. Rubod C, Boukerrou M, Brieu M et al (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 19:811–816

    Article  Google Scholar 

  26. Martins PAL (2010) Experimental and numerical studies of soft biological tissues. PhD. Thesis. Faculty of Engineering, University of Porto, Porto

    Google Scholar 

  27. Janda S (2006) Biomechanics of the pelvic floor musculature. PhD. Thesis. Technische Universiteit Delft, Delft

    Google Scholar 

  28. Baah-Dwomoh A, McGuire J, Tan T, De Vita R (2016) Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge. Appl Mech Rev 68:060801. https://doi.org/10.1115/1.4034442

    Article  Google Scholar 

  29. Brandão FS, Parente MP, Rocha PA et al (2016) Modeling the contraction of the pelvic floor muscles. Comput Methods Biomech Biomed Engin 19:347–356. https://doi.org/10.1080/10255842.2015.1028031

    Article  Google Scholar 

  30. Rivaux G, Rubod C, Dedet B et al (2013) Comparative analysis of pelvic ligaments: a biomechanics study. Int Urogynecol J 24:135–139. https://doi.org/10.1007/s00192-012-1861-5

    Article  Google Scholar 

  31. Martins P, Silva-Filho AL, Fonseca AMRM et al (2013) Strength of round and uterosacral ligaments: a biomechanical study. Arch Gynecol Obstet 287:313–318. https://doi.org/10.1007/s00404-012-2564-3

    Article  Google Scholar 

  32. Silva MET, Brandao S, Parente MP et al (2016) Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging. Proc Inst Mech Eng Part H J Eng Med 230:298–309. https://doi.org/10.1177/0954411916630571

    Article  Google Scholar 

  33. Patel PD, Amrute KV, Badlani GH (2007) Pelvic organ prolapse and stress urinary incontinence: a review of etiological factors. Indian J Urol 23:135–141. https://doi.org/10.4103/0970-1591.32064

    Article  Google Scholar 

  34. Jean-Charles C, Rubod C, Brieu M et al (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int Urogynecol J 21:1535–1538. https://doi.org/10.1007/s00192-010-1208-z

    Article  Google Scholar 

  35. Kerkhof MH, Hendriks L, Brölmann H a M (2009) Changes in connective tissue in patients with pelvic organ prolapse--a review of the current literature. Int Urogynecol J Pelvic Floor Dysfunct 20:461–474. https://doi.org/10.1007/s00192-008-0737-1

    Article  Google Scholar 

  36. Ashton-Miller JA, Delancey JO (2009) On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng 11:163–176. https://doi.org/10.1146/annurev-bioeng-061008-12482337

    Article  Google Scholar 

  37. Parente MP, Natal Jorge RM, Mascarenhas T et al (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J Pelvic Floor Dysfunct 19:65–71. https://doi.org/10.1007/s00192-007-0388-7

    Article  Google Scholar 

  38. Li X, Kruger J, Chung J, Nash M, Nielsen P (2008) Modelling the pelvic floor for investigating difficulties in childbirth. In: SPIE (Medical Imaging), vol 6916, p 69160V

    Google Scholar 

  39. Brooks S, Zerba E, Faulkner J (1995) Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol 488:459–469

    Article  Google Scholar 

  40. Parente MP, Natal Jorge RM, Mascarenhas T et al (2009) The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor. Eur J Obstet Gynecol Reprod Biol 144S:S166–S169. https://doi.org/10.1016/j.ejogrb.2009.02.033

    Article  Google Scholar 

  41. Oliveira D, Parente M, Calvo B, Mascarenhas T, Natal Jorge R (2016) Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. J Biomech 49(4):594–601. https://doi.org/10.1016/j.jbiomech.2016.01.014

    Article  Google Scholar 

  42. Yan X, Kruger J, Li X, Nash M, Nielsen P (2013) Modelling effect of bony pelvis on childbirth mechanics. Neurourol Urodyn 32(6):531–532

    Google Scholar 

  43. Vila Pouca M, Ferreira J, Oliveira D, Parente M, Natal Jorge R (2018) Viscous effects in pelvic floor muscles during childbirth: a numerical study. Int J Numer Methods Biomed Eng 34(3):e2927. https://doi.org/10.1002/cnm.2927

    Article  MathSciNet  Google Scholar 

  44. Vila Pouca M, Ferreira J, Oliveira D, Parente M, Mascarenhas T, Natal Jorge R (2018) On the effect of labour durations using an anisotropic visco-hyperelastic-damage approach to simulate vaginal deliveries. J Mech Behav Biomed Mater 88:120–126. https://doi.org/10.1016/j.jmbbm.2018.08.011

    Article  Google Scholar 

  45. Hemmerich A, Diesbourg T, Dumas G (2018) Development and validation of a computational model for understanding the effects of an upright birthing position on the female pelvis. J Biomech 77:99–106. https://doi.org/10.1016/j.jbiomech.2018.06.013

    Article  Google Scholar 

  46. Hemmerich A, Diesbourg T, Dumas G (2018) Determining loads acting on the pelvis in upright and recumbent birthing positions: a case study. Clin Biomech 57:10–18. https://doi.org/10.1016/j.clinbiomech.2018.05.011

    Article  Google Scholar 

  47. Jiang H, Qian X, Carroli G, Garner P (2017) Selective versus routine use of episiotomy for vaginal birth. Cochrane Database Syst Rev (2):CD000081. https://doi.org/10.1002/14651858.CD000081.pub3

  48. Oliveira D, Parente M, Calvo B, Mascarenhas T, Natal Jorge R (2016) A biomechanical analysis on the impact of episiotomy during childbirth. Biomech Model Mechanobiol 15(6):1523–1534. https://doi.org/10.1007/s10237-016-0781-6

    Article  Google Scholar 

  49. Oliveira D, Parente M, Calvo B, Mascarenhas T, Natal Jorge R (2017) The management of episiotomy technique and its effect on pelvic floor muscles during a malposition childbirth. Comput Methods Biomech Biomed Engin 20(11):1249–1259. https://doi.org/10.1080/10255842.2017.1349762

    Article  Google Scholar 

  50. Ozkan E, Goksel O (2015) Compliance boundary conditions for simulating deformations in a limited target region. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 929–932. https://doi.org/10.1109/EMBC.2015.7318515

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Portuguese Foundation of Science under grants IF/00159/2014, and the funding of project 030062 SIM4SafeBirth—A biomechanical approach to improve childbirth outcomes and NORTE-01-0145-FEDER-000022 SciTech—Science and Technology for Competitive and Sustainable Industries, cofinanced by Norte’s Regional Operational Programme (NORTE2020), through European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato M. Natal Jorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, D.A., Silva, M.E.T., Pouca, M.V., Parente, M.P.L., Mascarenhas, T., Natal Jorge, R.M. (2020). Biomechanical Simulation of Vaginal Childbirth: The Colors of the Pelvic Floor Muscles. In: Nash, M., Nielsen, P., Wittek, A., Miller, K., Joldes, G. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-15923-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15923-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15922-1

  • Online ISBN: 978-3-030-15923-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics