Skip to main content

Capillary Interaction in Wet Granular Assemblies: Part 1

  • Chapter
  • First Online:
Particles in Contact

Abstract

Liquid transport and capillary cohesion in partially saturated particulate materials are relevant to many areas of geosciences and process engineering. This chapter demonstrates that computations of capillary surfaces by numerical energy minimizations (NEM) can be utilized to study the formation and spreading of wetting films on rough surfaces, interfacial shapes and capillary forces of funicular liquid clusters, and the effect of contact angle hysteresis on liquid transport and capillary forces between spherical particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ruby is chemically to sapphire (Al\(_2\)O\(_3\)) with traces of Cr\(^{3+}\) ions.

  2. 2.

    This proof can be easily extended to four spherical particles whose centers are not co-planar.

References

  1. Haines, W.B.: Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agr. Sci. 15(4): 529–535 (1925). https://doi.org/10.1017/S0021859600082460

    Article  CAS  Google Scholar 

  2. Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16(3), 492–505 (1926). https://doi.org/10.1017/S0021859600007838

    Article  CAS  Google Scholar 

  3. Pye, K., Tsoar, H.: Aeolian Sand and Sand Dunes. Springer (2009)

    Google Scholar 

  4. Kim, T.H., Hwang, C.: Modeling of tensile strength on moist granular earth material at low water content. Eng. Geol. 69(3), 233–244 (2003). https://doi.org/10.1016/S0013-7952(02)00284-3

    Article  Google Scholar 

  5. Simons, S.J.R., Fairbrother, R.J.: Direct observations of liquid binder-particle interactions: the role of wetting behaviour in agglomerate growth. Powder Technol. 110(1–2), 44–58 (2000). https://doi.org/10.1016/S0032-5910(99)00267-3

    Article  CAS  Google Scholar 

  6. Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117(1–2), 3–39 (2001). https://doi.org/10.1016/S0032-5910(01)00313-8

    Article  CAS  Google Scholar 

  7. Herminghaus, S.: Wet granular matter. A truly complex fluid. In: Series in Soft Condensed Matter, vol. 6. World Scientific Publishing, Singapore (2013)

    Google Scholar 

  8. Lukyanov, A.V., Sushchikh, M.M., Baines, M.J., Theofanous, T.G.: Superfast nonlinear diffusion: capillary transport in particulate porous media. Phys. Rev. Lett. 109(21), 214501 (2012). https://doi.org/10.1103/PhysRevLett.109.214501

    Article  CAS  Google Scholar 

  9. Mani, R., Semprebon, C., Kadau, D., Herrmann, H.-J., Brinkmann, M., Herminghaus, S.: Role of contact-angle hysteresis for fluid transport in wet granular matter. Phys. Rev. E 91, 042204 (2015). https://doi.org/10.1103/PhysRevE.91.042204

    Article  CAS  Google Scholar 

  10. Singh, K., Scholl, H., Brinkmann, M., Di Michiel, M., Scheel, M., Herminghaus, S., Seemann, R.: The role of local instabilities in fluid invasion into permeable media. Sci. Rep. 7, 444 (2017). https://doi.org/10.1038/s41598-017-00191-y

    Article  CAS  Google Scholar 

  11. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 189–193 (2008). https://doi.org/10.1038/nmat2117

    Article  CAS  Google Scholar 

  12. Melnikov, K., Mani, R., Wittel, F.K., Thielmann, M., Herrmann, H.-J.: Grain-scale modeling of arbitrary fluid saturation in random packings. Phys. Rev. E 92(2), 022206 (2015). https://doi.org/10.1103/PhysRevE.92.022206

    Article  CAS  Google Scholar 

  13. Butt, H.-J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146(1–2), 48–60 (2009). https://doi.org/10.1016/j.cis.2008.10.002

    Article  CAS  Google Scholar 

  14. Turton, R.: Challenges in the modeling and prediction of coating of pharmaceutical dosage forms. Powder Technol. 181(32), 186–194 (2008). https://doi.org/10.1016/j.powtec.2006.12.006

    Article  CAS  Google Scholar 

  15. Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore–Scale Perspective. Cambridge University Press (2017)

    Google Scholar 

  16. Scheel, M.: Experimental investigations of the mechanical properties of wet granular matter. Dissertation, University of Göttingen (2010). http://hdl.handle.net/11858/00-1735-0000-0006-B4BC-4

  17. Halsey, T.C., Levine, A.J.: How sandcastles fall. Phys. Rev. Lett. 80(14), 3141–3144 (1997). https://doi.org/10.1103/PhysRevLett.80.3141

    Article  Google Scholar 

  18. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Herminghaus, S.: Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime. J. Phys.: Condens. Matter 20(49), 494236 (2008). https://doi.org/10.1088/0953-8984/20/49/494236

    Article  CAS  Google Scholar 

  19. Melnikov, K., Wittel, F.K., Herrmann, H.J.: Micro-mechanical failure analysis of wet granular matter. Acta Geotechnica 11(3), 539–548 (2016). https://doi.org/10.1007/s11440-016-0465-5

    Article  Google Scholar 

  20. Friedman, S.R., Khalil, M., Taborek, P.: Wetting transition in water. Phys. Rev. Lett. 111(22), 226101 (2013). https://doi.org/10.1103/PhysRevLett.111.226101

    Article  CAS  Google Scholar 

  21. Pompe, T., Herminghaus, S.: Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett. 85(9), 1930–1933 (2000). https://doi.org/10.1103/PhysRevLett.85.1930

    Article  CAS  Google Scholar 

  22. Hofmann, T., Tasinkevych, M., Checco, A., Dobisz, E., Dietrich, S., Ocko, B.M.: Wetting of nanopatterned grooved surfaces. Phys. Rev. Lett. 104(10), 106102 (2010). https://doi.org/10.1103/PhysRevLett.104.106102

    Article  CAS  Google Scholar 

  23. do Carmo, M.: Differential Geometry of Curves and Surfaces, Prentice Hall (1976)

    Google Scholar 

  24. Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992). https://doi.org/10.1080/10586458.1992.10504253

    Article  Google Scholar 

  25. Brakke, K.A., Klinowski, J., Mackay, A.L.: The surface evolver and the stability of liquid surfaces. Philos. Trans. R. Soc. Lond. A 354, 2143–2157 (1996). https://doi.org/10.1098/rsta.1996.0095

    Article  Google Scholar 

  26. Eral, H.B., de Ruiter, J., de Ruiter, R., Oh, J.M., Semprebon, C., Brinkmann, M., Mugele, F.: Drops on functional fibers: from barrels to clamshells and back. Soft Matter 7, 5138–5143 (2011). https://doi.org/10.1039/C0SM01403F

    Article  CAS  Google Scholar 

  27. Semprebon, C., Brinkmann, M.: On the onset of motion of sliding drops. Soft Matter 10, 3325–3334 (2014). https://doi.org/10.1039/C3SM51959G

    Article  CAS  Google Scholar 

  28. Semprebon, C., Scheel, M., Herminghaus, S., Seemann, R., Brinkmann, M.: Liquid morphologies and capillary forces between three spherical beads. Phys. Rev. E 94(1), 012907 (2016). https://doi.org/10.1103/PhysRevE.94.012907

    Article  CAS  Google Scholar 

  29. De Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985). https://doi.org/10.1103/RevModPhys.57.827

    Article  Google Scholar 

  30. De Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer (2004)

    Google Scholar 

  31. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936). https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  32. Herminghaus, S.: Wetting, spreading, and adsorption on randomly rough surfaces. Eur. Phys. J. E 35, 43 (2012). https://doi.org/10.1140/epje/i2012-12043-8

    Article  CAS  Google Scholar 

  33. Herminghaus, S.: Universal phase diagram for wetting on mesoscale roughness. Phys. Rev. Lett. 109, 236102 (2012). https://doi.org/10.1103/PhysRevLett.109.236102

    Article  CAS  Google Scholar 

  34. Dufour, R., Semprebon, C., Herminghaus, S.: Filling transitions on rough surfaces: Inadequacy of Gaussian surface models. Phys. Rev. E 93, 032802 (2016). https://doi.org/10.1103/PhysRevE.93.032802

    Article  CAS  Google Scholar 

  35. Semprebon, C., Forsberg, P., Priest, C., Brinkmann, M.: Pinning and wicking in regular pillar arrays. Soft Matter 10, 5739–5748 (2014). https://doi.org/10.1039/C4SM00684D

    Article  CAS  Google Scholar 

  36. Kohonen, M., Geromichalos, D., Scheel, M., Schier, C., Herminghaus, S.: On capillary bridges in wet granular materials. Physica A 339, 7–15 (2004). https://doi.org/10.1016/j.physa.2004.03.047

    Article  Google Scholar 

  37. Niven, R.K.: Force stability of pore-scale fluid bridges and ganglia in axisymmetric and non-axisymmetric configurations. J. Pet. Sci. Eng. 52, 1 (2006). https://doi.org/10.1016/j.petrol.2006.03.015

    Article  CAS  Google Scholar 

  38. Farmer, T.P., Bird, J.C.: Asymmetric capillary bridges between contacting spheres. J. Colloid Interface Sci. 454, 192–199 (2015). https://doi.org/10.1016/j.jcis.2015.04.045

    Article  CAS  Google Scholar 

  39. Dormann, M., Schmid, H.J.: Simulation of capillary bridges between nanoscale particles. Langmuir 30, 1055–1062 (2014). https://doi.org/10.1021/la404409k

    Article  CAS  Google Scholar 

  40. Eral, H.B., ’t Mannetje, D.J.C.M., Oh, J.M.: Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291(2), 247–260 (2013). https://doi.org/10.1007/s00396-012-2796-6

    Article  Google Scholar 

  41. Pepin, X., Rossetti, D., Iveson, S.M., Simons, S.J.R.: Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. J. Colloid Interface Sci. 232(2), 289–297 (2000). https://doi.org/10.1006/jcis.2000.7182

    Article  CAS  Google Scholar 

  42. Willet, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000). https://doi.org/10.1021/la000657y

    Article  CAS  Google Scholar 

  43. Willet, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Effects of wetting hysteresis on pendular liquid bridges between rigid spheres. Powder Technol. 130, 63–69 (2003). https://doi.org/10.1016/S0032-5910(02)00235-8

    Article  CAS  Google Scholar 

  44. Harris, C.C., Morrow, N.R.: Pendular moisture in packings of equal spheres. Nature 203, 706–708 (1964). https://doi.org/10.1038/203706b0

    Article  Google Scholar 

  45. Rumpf, H., Schubert, H.: The behavior of agglomerates under tensile strain. J. Cherm. Eng. Jpn. 7(4), 294–298 (1974). https://doi.org/10.1252/jcej.7.294

    Article  Google Scholar 

  46. Bear, J.: Modeling Phenomena of Flow and Transport in Porous Media. Springer (2018)

    Google Scholar 

  47. Richefeu, V., El Youssoufi, M.S., Radjaï, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006). https://doi.org/10.1103/PhysRevE.73.051304

    Article  CAS  Google Scholar 

  48. Mani, R., Kadau, D., Or, D., Herrmann, H.-J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109, 248001 (2012). https://doi.org/10.1103/PhysRevLett.109.248001

    Article  CAS  Google Scholar 

  49. de Ruiter, R., Semprebon, C., van Gorcum, M., Duits, M.H.G., Brinkmann, M., Mugele, F.: Stability limits of capillary bridges: how contact angle hysteresis affects morphology transitions of liquid microstructures. Phys. Rev. Lett. 114, 234501 (2015). https://doi.org/10.1103/PhysRevLett.114.234501

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Brinkmann .

Editor information

Editors and Affiliations

Appendix

Appendix

Equivalence of Capillary Forces

By differentiation of the Grand interfacial free energy \(\mathscr {G}\) Eq. (2) with respect to the coordinates \(\bar{\mathbf r}\) one obtains the following identity:

$$\begin{aligned} \varvec{\nabla }_{{{\mathbf r}}_i} G\big (\bar{\mathbf r},P \big ) = \varvec{\nabla }_{{{\mathbf r}}_i} E\big (\bar{\mathbf r},\tilde{V}(\bar{\mathbf r},P)\big ) -P\,\varvec{\nabla }_{{{\mathbf r}}_i}\tilde{V}\big (\bar{\mathbf r},P\big )~. \end{aligned}$$
(25)

where

$$\begin{aligned} P=\tilde{P}(\bar{\mathbf r},V)=\partial _V E(\bar{\mathbf r},V)~. \end{aligned}$$
(26)

Employing now the chain rule of differentiation, the first term in Eq. 25) can be rewritten as:

$$\begin{aligned}&{\varvec{\nabla }_{{{\mathbf r}}_i}E\big (\bar{{\mathbf r}},\tilde{V}(\bar{{\mathbf r}},P)\big ) =\varvec{\nabla }_{{{\mathbf r}}_i} E\big (\bar{\mathbf r},V)|_{V=\tilde{V}(\bar{\mathbf r},P)}}\nonumber \\&\,\,+\partial _V E(\bar{\mathbf r},V)|_{V=\tilde{V}(\bar{\mathbf r},P)} \varvec{\nabla }_{{{\mathbf r}}_i}\tilde{V}\big (\bar{{\mathbf r}},P \big )~, \end{aligned}$$
(27)

and one arrives at:

$$\begin{aligned} \varvec{\nabla }_{{{\mathbf r}}_i}G\big (\bar{\mathbf r}, P \big )= \varvec{\nabla }_{{{\mathbf r}}_i}E\big (\bar{\mathbf r},V \big )|_{V=\tilde{V}(\bar{\mathbf r}, P)} \end{aligned}$$
(28)

which shows the equivalence of capillary forces in the volume controlled and capillary pressure controlled case.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herminghaus, S., Semprebon, C., Brinkmann, M. (2019). Capillary Interaction in Wet Granular Assemblies: Part 1. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_8

Download citation

Publish with us

Policies and ethics