Skip to main content

Microwave Emission During the Impact Compaction of Particle Bed

  • Chapter
  • First Online:
Particles in Contact

Abstract

Cost, quality and productivity in comminution processes depend on the portion of consumed energy directly applied to the particle size. Especially particle bed grinding is an inefficient process and has great potential to improve its efficiency. The modelling of the stress and breakage behavior provides complex solutions that are very difficult to apply in terms of real grinding problems. An experimental technique to detect the crack formation in particle may be helpful to obtain the real parameters for modelling. Low sized, not expansive and wireless sensors, based on microwave emission, are promising for this application. In the first step, the microwave emission from Lead zirconate titanate Pb[ZrxTi1−x]O3 (PZT) induced by mechanical stressing was investigated. The mechanical stressing occurs by impact of a sharp tungsten indenter on the upper surface of PZT-ceramics. In the second step, the microwave emission from PZT-ceramics was used for investigations of stressing behavior of particle beds. The PZT-particles were incorporated in beds of glass particles. Variable impact conditions were used to obtain the microwave response of PZT-particles located in different layers of particle bed. An acoustic sensor was used to obtain the mechanical force acting on particles bed during the impact. Based on this microwave response the stressing and breakage behavior of particle beds was characterized. The proposed method allows a direct optimization of particle size reduction in particle beds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

g:

Gravity constant (m s−2)

p:

Dipole moment (m C)

ε0:

Vacuum permittivity (As/v/m)

c:

Speed of light (m/s)

tdp:

Depolarization time (s)

q:

Electrical charge (C)

I :

Emission current (A)

φ :

Work function (v)

β :

Field enhancement factor (–)

p:

Mechanical impulse of pen (kg m/s)

m:

Mass of the pen (g)

v:

Velocity of the pen (m/s)

ti:

Time interval (s)

References

  1. Müller, F.: Hochdruckzerkleinerung im Gutbett bei Variation von Feuchte und Beanspruchungsgeschwindigkeit. Technische Universitat Clausthal (1989)

    Google Scholar 

  2. Schonert, K., Müller, F., Schwechten, D.: Comperssion an energy absorption at interparticle breakage. ZEMENT-KALK-GIPS 43(2), 65–70 (1990)

    Google Scholar 

  3. Schubert, H.: Zu einigen Fragen der Kollektivzerkleinerung. Chem. Techn. 19(10), 595–598 (1967)

    CAS  Google Scholar 

  4. Aman, S., Aman, A., Morgner, W.: Monitoring of carbon fibre breakage in composites based on microwave emission. Compos. Sci. Technol. 84, 58–64 (2013)

    Article  CAS  Google Scholar 

  5. Aman, A., Majcherek, S., Schmidt, M.-P., Hirsch, S.: Microwave sensor for mechanical stress measurement based on ferroelectric graphene nanosheet composites. Procedia Eng. 87, 124–127 (2014)

    Article  CAS  Google Scholar 

  6. Aman, A., Majcherek, S., Hirsch, S.: Microwave emission of carbon fibres during electrical breakdown. Sens. Lett. 13(1), 98–101 (2015)

    Article  Google Scholar 

  7. Aman, A., Aman, S., Martin, M.: Sensoreinrichtung und Verfahren zur Detektierung und Lokalisierung von Rissen in Bauteilen, DE102012006155A1

    Google Scholar 

  8. Koktavy, P.: Experimental study of electromagnetic emission signals generated by crack generation in composite materials. Meas. Sci. Technol. 20(1), 15704 (2008)

    Article  Google Scholar 

  9. Srilakshmi, B., Misra, A.: Secondary electromagnetic radiation during plastic deformation and crack propagation in uncoated and tin coated plain-carbon steel. J. Mater. Sci. 40(23), 6079–6086 (2005)

    Article  CAS  Google Scholar 

  10. Ogawa, T., Oike, K., Miura, T.: Electromagnetic radiations from rocks. J. Geophys. Res. Atmos. 90(D4), 6245–6249 (1985)

    Article  Google Scholar 

  11. Aman, S., Tomas, J., Molitor, M., Aman, A.: Investigation of a deformation-breakage-parameter by the use of microscopic discharges of gas during the propagation of micro cracks and breakage of particles. Materialwiss. Werkstofftech. 43(12), 1001–1005 (2012)

    Article  CAS  Google Scholar 

  12. Dickinson, J.T., Park, M.K., Donaldson, E.E., Jensen, L.C.: Fracto-emission accompanying adhesive failure. J. Vac. Sci. Technol. 20(3), 436–439 (1982)

    Article  Google Scholar 

  13. Dickinson, J.T., Jahan-Latibari, A., Jensen, L.C.: Electron emission and acoustic emission from the fracture of graphite/epoxy composites. J. Mater. Sci. 20(1), 229–236 (1985)

    Article  Google Scholar 

  14. Dickinson, J.T., Donaldson, E.E., Park, M.K.: The emission of electrons and positive ions from fracture of materials. J. Mater. Sci. 16(10), 2897–2908 (1981)

    Article  CAS  Google Scholar 

  15. Chandra, B.P.: Mechanoluminescence. Springer Science & Business Media (1998)

    Google Scholar 

  16. Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 52(3), 369–376 (1994)

    Article  Google Scholar 

  17. Morgner, W.: On-line application of acoustic emission analysis. J. Acoust. Emiss. 8(1–2), 570 (1994)

    Google Scholar 

  18. Aman, S., Aman, A., Majcherek, S., Hirsch, S., Schmidt, B.: Microwave based method of monitoring crack formation. Meas. Sci. Technol. 25(2), 25014 (2014)

    Article  Google Scholar 

  19. Aman, A., Majcherek, S., Hirsch, S., Schmidt, B.: Microwave emission from lead zirconate titanate induced by impulsive mechanical load. J. Appl. Phys. 118(16), 164105 (2015)

    Article  Google Scholar 

  20. Landau, L.D., Lifšic, E.M.: Lehrbuch der theoretischen Physik: In 10 Bändenn 1, 14th edn. Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH et Co. KG, Haan-Gruiten (2016)

    Google Scholar 

  21. Cheng, Y., Zhou, O.: Electron field emission from carbon nanotubes. C. R. Phys. 4(9), 1021–1033 (2003)

    Article  CAS  Google Scholar 

  22. Gomer, R.: Field Emission and Field Ionization (AVS Classics of Vacuum Science and Technology). AIP, College Park, MD (1993)

    Google Scholar 

  23. Flechtner, D., Golkowski, C., Ivers, J.D., Kerslick, G.S., Nation, J.A., Schächter, L.: Electron emission from lead–zirconate–titanate ceramics. J. Appl. Phys. 83(2), 955–961 (1998)

    Article  CAS  Google Scholar 

  24. Sud’enkov, Y.V.: Electromagnetic radiation induced by the failure of piezoelectrics under the action of submicrosecond stress pulses. Tech. Phys. 46(12), 1588–1590 (2001)

    Article  Google Scholar 

  25. Müller, P., Antonyuk, S., Tomas, J.: Simulation des Druck-und Stoßvorgangs von Zeolith 4A-Granulaten. Chem. Ing. Tech. 83(5), 643–651 (2011)

    Article  Google Scholar 

  26. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.A.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12(1), 15–47 (2010)

    Article  CAS  Google Scholar 

  27. Antonyuk, S., Heinrich, S., Deen, N., Kuipers, H.: Influence of liquid layers on energy absorption during particle impact. Particuology 7(4), 245–259 (2009)

    Article  CAS  Google Scholar 

  28. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim, L., Butt, H.-J.: Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62(11), 2843–2864 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Aman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aman, S., Aman, A., Hintz, W. (2019). Microwave Emission During the Impact Compaction of Particle Bed. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_3

Download citation

Publish with us

Policies and ethics