Skip to main content

Understanding and Manipulation of Nanoparticle Contact Forces by Capillary Bridges

  • Chapter
  • First Online:
Book cover Particles in Contact

Abstract

Since, in the presence of humidity the inter-particle processes are dominated by capillary forces, a fundamental understanding of the water adsorption and the capillary bridge formation is very important. However, the adsorbed water structure and thus the capillary bridge formation is influenced by various parameters like the particle morphology (e.g. particle size, roughness) as well as the surface chemistry (surface energy, adsorbate structure) and therefore needs to be analyzed on a submicroscopic or even molecular basis. A multi-scale approach ranging from experiments on an individual particle level (AFM and liquid bridge simulation) and investigations on small particle ensembles (combined QCM-D/FTIR) up to macroscopic description of bulk behavior is presented in this chapter. In this context, the combined in situ QCM-D/FTIR experiments are bridging the gap between experiments on an individual particle level and macroscopic bulk behavior. Variation of surface chemistry by means of adsorption of functional organic molecules allows for the correlation of macroscopic particle behavior to nanoscopic effects like the presence and structure of adsorbate layers as well as the formation of capillary bridges while keeping the disperse properties constant. Besides extensive experimental work, simulations of capillary bridges formed by condensation from humid air are presented. It is clearly shown that well known approximations which have been introduced for micron-sized particles are not valid any more for nano-scaled particles. The forces between nanoparticles by static liquid bridges and their dependency on particle size, contact angle, humidity and interparticle distance are discussed in detail. Furthermore, capillary forces during separation of particles are studied thoroughly and a constitutive law based on a contact stiffness allows the transfer to DEM simulations of wet powders. Finally, it is demonstrated by comparison to Molecular Dynamics simulations, that the used continuum approach to simulate capillary bridges might even be used down to particle sizes of a few nanometers, if some additional effects are considered correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ffc:

Flowability index (–)

D:

Particle diameter (m)

d:

Distance between particle surfaces (m)

f:

Frequency (Hz)

F:

Force (N)

h:

Size of capillary bridge (m)

k:

Stiffness of capillary bridge contact (m−1)

n:

Overtone number

p:

Pressure (Pa)

r:

Radius of curvature (m)

R:

Universal gas constant (8,314 J mol−1 K−1)

T:

Temperature (K)

VM:

Molar volume (m3 mol−1)

V:

Volume (m3)

β:

Filling angle of capillary bridge (°)

γ:

Surface tension (N m−1)

ΔΓ:

Dissipation in (Hz)

φ:

Relative humidity (–)

λ:

Surface enhancement factor (–)

Θ:

Contact angle (°)

ρ:

Density (kg m−3)

σ:

Stress (Pa)

C:

Capillary

eff:

Effective

K:

Kelvin

max:

Maximum

min:

Minimum

mod:

Modified

P:

Pressure related

Pl:

Plate

S:

Saturation

S:

Surface tension related

Sp:

Sphere

BET:

Determination of specific surface area according to Brunauer, Emmett, and Teller

FE-SEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared (spectroscopy)

MD:

Molecular dynamics

ODS:

Octadecyltriethoxysiloxane

ODT:

1-octadecanthiol

PE-CVD:

Plasma enhanced chemical vapour deposition

PM-IRRAS:

Photoelastic-modulated Fourier transform infrared absorption spectroscopy

QCM:

Quartz crystal microbalance

QCM-D:

QCM with dissipation monitoring

RH:

Relative humidity

SEM:

Scanning electron microscopy

DEM:

Discrete Element Modeling

References

  1. Hann, D., Stražišar, J.: Influence of particle size distribution, moisture content, and particle shape on the flow properties of bulk solids. Instrum. Sci. Technol. 35(5), 571–584 (2007). https://doi.org/10.1080/10739140701540453

    Article  CAS  Google Scholar 

  2. Schulze, D.: Powders and Bulk Solids: Behavior, Characterization, Storage and Flow. Springer, Berlin (2008)

    Google Scholar 

  3. Rabinovich, Y., Esayanur, M., Johanson, K., et al.: The flow behavior of the liquid/powder mixture, theory and experiment. I. The effect of the capillary force (bridging rupture). Powder Technol. 204(2–3), 173–179 (2010). https://doi.org/10.1016/j.powtec.2010.07.035

    Article  CAS  Google Scholar 

  4. Schubert, H.: Capillary forces—modeling and application in particulate technology. Powder Technol. 37(1), 105–116 (1984). https://doi.org/10.1016/0032-5910(84)80010-8

    Article  Google Scholar 

  5. Israelachvili, J.N.: Intermolecular and Surface Forces: Revised Third Edition, 3rd edn. Elsevier Science, Burlington (2011)

    Google Scholar 

  6. Butt, H.-J., Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59(1–6), 1–152 (2005). https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  7. Farshchi-Tabrizi, M., Kappl, M., Cheng, Y., et al.: On the adhesion between fine particles and nanocontacts: an atomic force microscope study. Langmuir 22(5), 2171–2184 (2006). https://doi.org/10.1021/la052760z

    Article  CAS  Google Scholar 

  8. Keller, A., Fritzsche, M., Ogaki, R., et al.: Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation. J. Chem. Phys. 134(10), 104705 (2011). https://doi.org/10.1063/1.3561292

    Article  CAS  Google Scholar 

  9. Kunze, C., Torun, B., Giner, I., et al.: Surface chemistry and nonadecanoic acid adsorbate layers on TiO2(100) surfaces prepared at ambient conditions. Surf. Sci. 606(19–20), 1527–1533 (2012). https://doi.org/10.1016/j.susc.2012.05.025

    Article  CAS  Google Scholar 

  10. Torun, B., Kunze, C., Zhang, C., et al.: Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up. Phys. Chem. Chem. Phys. 16(16), 7377–7384 (2014). https://doi.org/10.1039/c3cp54912g

    Article  CAS  Google Scholar 

  11. Torun, B., Giner, I., Grundmeier, G., et al.: In situ PM-IRRAS studies of organothiols and organosilane monolayers-ZnO interfaces at high water activities. Surf. Interface Anal. 49(1), 71–74 (2017). https://doi.org/10.1002/sia.6058

    Article  CAS  Google Scholar 

  12. Rajca, A.: An Introduction to Ultrathin Organic Films: From Langmuirblodgett to Self-assembly, By Abraham Ulman. Academic Press, London (1991), Xxiii, 442 pp. $65. ISBN 0-12-708230-1. Adv. Mater. 4(4), 309 (1992). https://doi.org/10.1002/adma.19920040424

    Article  Google Scholar 

  13. Marrone, M., Montanari, T., Busca, G., et al.: A Fourier transform infrared (FTIR) study of the reaction of triethoxysilane (TES) and bis[3-triethoxysilylpropyl]tetrasulfane (TESPT) with the surface of amorphous silica. J. Phys. Chem. B 108(11), 3563–3572 (2004). https://doi.org/10.1021/jp036148x

    Article  CAS  Google Scholar 

  14. Riccio, M., Montanari, T., Castellano, M., et al.: An IR study of the chemistry of triethoxysilane at the surface of metal oxides. Colloids Surf. A 294(1–3), 181–190 (2007). https://doi.org/10.1016/j.colsurfa.2006.08.010

    Article  CAS  Google Scholar 

  15. Yen, Y.S., Wong, J.S.: Infrared reflectance properties of surface thin films. J. Phys. Chem. 93(20), 7208–7216 (1989). https://doi.org/10.1021/j100357a036

    Article  CAS  Google Scholar 

  16. Calzaferri, G., Imhof, R.: In situ attenuated total reflection FTIR investigations of H2O, HSiCl3 and Co2(CO)8 on ZnSe in the range 600–4000 cm−1. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 52(1), 23–28 (1996). https://doi.org/10.1016/0584-8539(95)01533-7

    Article  Google Scholar 

  17. Nyanhongo, G.S., Nugroho Prasetyo, E., Herrero Acero, E., et al.: Engineering strategies for successful development of functional polymers using oxidative enzymes. Chem. Eng. Technol. 35(8), 1359–1372 (2012). https://doi.org/10.1002/ceat.201100590

    Article  CAS  Google Scholar 

  18. Grundmeier, G., Matheisen, E., Stratmann, M.: Formation and stability of ultrathin organosilane polymers on iron. J. Adhes. Sci. Technol. 10(6), 573–588 (1996). https://doi.org/10.1163/156856196X00599

    Article  CAS  Google Scholar 

  19. Asay, D.B., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109(35), 16760–16763 (2005). https://doi.org/10.1021/jp053042o

    Article  CAS  Google Scholar 

  20. Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008)

    Google Scholar 

  21. Giner, I., Torun, B., Han, Y., et al.: Water adsorption and capillary bridge formation on silica micro-particle layers modified with perfluorinated organosilane monolayers. Appl. Surf. Sci. 475, 873–879 (2019). https://doi.org/10.1016/j.apsusc.2018.12.221

    Article  CAS  Google Scholar 

  22. Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789–2790 (1985). https://doi.org/10.1063/1.335874

    Article  CAS  Google Scholar 

  23. Du, B., König, A.M., Johannsmann, D.: On the role of capillary instabilities in the sandcastle effect. New J. Phys. 10(5), 53014 (2008). https://doi.org/10.1088/1367-2630/10/5/053014

    Article  Google Scholar 

  24. Kühne, T.D., Pascal, T.A., Kaxiras, E., et al.: New insights into the structure of the vapor/water interface from large-scale first-principles simulations. J. Phys. Chem. Lett. 2(2), 105–113 (2011). https://doi.org/10.1021/jz101391r

    Article  CAS  Google Scholar 

  25. Kühne, T.D., Krack, M., Parrinello, M.: Static and dynamical properties of liquid water from first principles by a novel car–parrinello-like approach. J. Chem. Theory Comput. 5(2), 235–241 (2009). https://doi.org/10.1021/ct800417q

    Article  CAS  Google Scholar 

  26. Sulpizi, M., Gaigeot, M.-P., Sprik, M.: The silica-water interface: how the silanols determine the surface acidity and modulate the water properties. J. Chem. Theory Comput. 8(3), 1037–1047 (2012). https://doi.org/10.1021/ct2007154

    Article  CAS  Google Scholar 

  27. Laube, J., Salameh, S., Kappl, M., et al.: Contact forces between TiO2 nanoparticles governed by an interplay of adsorbed water layers and roughness. Langmuir 31(41), 11288–11295 (2015). https://doi.org/10.1021/acs.langmuir.5b02989

    Article  CAS  Google Scholar 

  28. Boray Barıș Torun: In situ analysis of particles in contact under ambient conditions. Doctoral Thesis, University of Paderborn (2016)

    Google Scholar 

  29. Hüttl, G., Klemm, V., Popp, R., et al.: Tailored colloidal AFM probes and their TEM investigation. Surf. Interface Anal. 33(2), 50–53 (2002). https://doi.org/10.1002/sia.1160

    Article  CAS  Google Scholar 

  30. Sawunyama, P., Fujishima, A., Hashimoto, K.: Photocatalysis on TiO2 surfaces investigated by atomic force microscopy: photodegradation of partial and full monolayers of stearic acid on TiO2 (110). Langmuir 15(10), 3551–3556 (1999). https://doi.org/10.1021/la9814440

    Article  CAS  Google Scholar 

  31. Haines, W.B.: Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci. 15(04), 529 (1925). https://doi.org/10.1017/S0021859600082460

    Article  CAS  Google Scholar 

  32. Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16(03), 492 (1926). https://doi.org/10.1017/S0021859600007838

    Article  CAS  Google Scholar 

  33. Orr, F.M., Scriven, L.E., Rivas, A.P.: Pendular rings between solids: Meniscus properties and capillary force. J. Fluid Mech. 67(04), 723 (1975). https://doi.org/10.1017/S0022112075000572

    Article  Google Scholar 

  34. Schubert, H.: Kapillaritat in Porosen Feststoff systemen. Springer, Berlin (1982)

    Book  Google Scholar 

  35. Chau, A., Rignier, S., Delchambre, A., et al.: Three-dimensional model for capillary nanobridges and capillary forces. Model. Simul. Mater. Sci. Eng. 15(3), 305–317 (2007). https://doi.org/10.1088/0965-0393/15/3/009

    Article  CAS  Google Scholar 

  36. Iinoya, K., Asakawa, S., Hotta, K., et al.: Liquid surface profiles in contact with symmetrical solid surfaces. Powder Technol. 1(1), 28–32 (1967). https://doi.org/10.1016/0032-5910(67)80005-6

    Article  CAS  Google Scholar 

  37. Pakarinen, O.H., Foster, A.S., Paajanen, M., et al.: Towards an accurate description of the capillary force in nanoparticle-surface interactions. Model. Simul. Mater. Sci. Eng. 13(7), 1175–1186 (2005). https://doi.org/10.1088/0965-0393/13/7/012

    Article  CAS  Google Scholar 

  38. Lambert, P., Chau, A., Delchambre, A., et al.: Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008). https://doi.org/10.1021/la7036444

    Article  CAS  Google Scholar 

  39. Salameh, S., Schneider, J., Laube, J., et al.: Adhesion mechanisms of the contact interface of TiO2 nanoparticles in films and aggregates. Langmuir 28(31), 11457–11464 (2012). https://doi.org/10.1021/la302242s

    Article  CAS  Google Scholar 

  40. Leroch, S., Wendland, M.: Influence of capillary bridge formation onto the silica nanoparticle interaction studied by grand canonical Monte Carlo simulations. Langmuir 29(40), 12410–12420 (2013). https://doi.org/10.1021/la402002f

    Article  CAS  Google Scholar 

  41. Megias-Alguacil, D., Gauckler, L.J.: Capillary forces between two solid spheres linked by a concave liquid bridge: regions of existence and forces mapping. AIChE J. 55(5), 1103–1109 (2009). https://doi.org/10.1002/aic.11726

    Article  CAS  Google Scholar 

  42. Adams, M.J., Johnson, S.A., Seville, J.P.K., et al.: Mapping the influence of gravity on pendular liquid bridges between rigid spheres. Langmuir 18(16), 6180–6184 (2002). https://doi.org/10.1021/la011823k

    Article  CAS  Google Scholar 

  43. Dörmann, M., Schmid, H.-J.: Simulation of capillary bridges between particles. Procedia Eng. 102, 14–23 (2015). https://doi.org/10.1016/j.proeng.2015.01.102

    Article  Google Scholar 

  44. Butt, H.-J., Kappl, M.: Surface and Interfacial Forces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010)

    Book  Google Scholar 

  45. Dörmann M (2018) Zur Modellierung von Kapillarbrücken zwischen nanoskaligen Partikeln. Doctoral, University of Paderborn

    Google Scholar 

  46. Willett, C.D., Adams, M.J., Johnson, S.A., et al.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000). https://doi.org/10.1021/la000657y

    Article  CAS  Google Scholar 

  47. Langmuir, I.: The evaporation of small spheres. Phys. Rev. 12(5), 368–370 (1918). https://doi.org/10.1103/PhysRev.12.368

    Article  CAS  Google Scholar 

  48. Kohonen, M.M., Maeda, N., Christenson, H.K.: Kinetics of capillary condensation in a nanoscale pore. Phys. Rev. Lett. 82(23), 4667–4670 (1999). https://doi.org/10.1103/PhysRevLett.82.4667

    Article  CAS  Google Scholar 

  49. Dörmann, M., Schmid, H.-J.: Distance-dependency of capillary bridges in thermodynamic equilibrium. Powder Technol. 312, 175–183 (2017). https://doi.org/10.1016/j.powtec.2017.01.012

    Article  CAS  Google Scholar 

  50. Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992). https://doi.org/10.1080/10586458.1992.10504253

    Article  Google Scholar 

  51. Tomas, J.: Mechanics of nanoparticle adhesion—a continuum approach. In: Particles on Surfaces 8: Detection, Adhesion and Removal, vol. 8, pp. 1–47 (2003)

    Google Scholar 

  52. Andrienko, D., Patricio, P., Vinogradova, O.I.: Capillary bridging and long-range attractive forces in a mean-field approach. J. Chem. Phys. 121(9), 4414–4423 (2004). https://doi.org/10.1063/1.1778154

    Article  CAS  Google Scholar 

  53. Petrov, P., Olsson, U., Wennerström, H.: Surface forces in bicontinuous microemulsions: water capillary condensation and lamellae formation. Langmuir 13(13), 3331–3337 (1997). https://doi.org/10.1021/la962085g

    Article  CAS  Google Scholar 

  54. Laube, J., Dörmann, M., Schmid, H.-J., et al.: Dependencies of the adhesion forces between TiO2 nanoparticles on size and ambient humidity. J. Phys. Chem. C 121(28), 15294–15303 (2017). https://doi.org/10.1021/acs.jpcc.7b05655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for supporting this work by the projects SCHM1429/7 and GR1709/12.

We thank Prof. Anjana Devi and her co-workers at the Ruhr University in Bochum for the atomic layer deposition of ultra-thin TiO2 films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmid, HJ., Grundmeier, G., Dörmann, M., Orive, A.G., de los Arcos, T., Torun, B. (2019). Understanding and Manipulation of Nanoparticle Contact Forces by Capillary Bridges. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_2

Download citation

Publish with us

Policies and ethics