Skip to main content

Non-ohmic Properties of Particle Layers in Electrostatic Precipitators

  • Chapter
  • First Online:
  • 741 Accesses

Abstract

The so-called back-corona hampers the separation of highly resistive particles in electrostatic precipitators. It is linked to the resistivity of the particle layers depending on the particle material, the particle size distribution but also the temperature and humidity of the surrounding gas. In this work, however, it was shown that electret properties are imposed on the particle layers deposited in an electrostatic precipitator. These, in turn, not only explain their non-ohmic properties in electrostatic precipitators but also allows measures to be taken to avoid back-corona.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A:

Area (m2)

E:

Electric field strength (V/m)

I:

Electric current (A)

j:

Current density (mA/m2)

R:

Ohmic resistance (Ω)

s:

Particle or dust layer thickness (m)

T:

Temperature (°C)

Td:

Dew point (°C)

t:

Time (s)

σ:

surface charge density (C/m2)

ρ:

Resistivity (Ω cm)

φ:

Relative humidity (%)

e:

Euler-number (–)

ε0:

Electric permittivity of vacuum (As/Vm)

ε:

Electric permittivity

η:

The density of current carriers per unit volume (C/m3)

ηE:

Density of current carriers after exposing a material to a strong electric field (C/m3)

κ:

Conductivity (1/Ω cm)

the κE:

Conductivity of the material after exposing a material to a strong electric field (1/Ω cm)

i:

Index of the initial condition like initial temperature, etc.

f:

Index of the final condition like final temperature, etc.

References

  1. Busby, T., Darby, K.: Efficiency of electrostatic precipitators as affected by the properties and combustion of coal. J. Inst. Fuel 36(268), 184–197 (1963)

    Google Scholar 

  2. Watson, K., Blecher, K.: Further investigation of electrostatic precipitator for large pulverized fuel-fired boilers. J. Air Water Pollut. 9(10), 577–583 (1966)

    Google Scholar 

  3. Miller, J., Hoferer, B., Schwab, A.J.: The impact of corona electrode configuration on electrostatic precipitator performance. J. Electrost. 44, 67–76 (1988)

    Article  Google Scholar 

  4. Young, R.P., Dubard, J.L., Sparks, L.E.: The onset of electrical breakdown in dust layers. JAPCA 38(1412–1418), 1518–1522 (1988)

    Article  CAS  Google Scholar 

  5. Lowe, H.J., Lucas, D.H.: The physics of electrostatic precipitation. Brit. J. Appl. Phys. Suppl. 2, 540–547 (1953)

    Google Scholar 

  6. Lee, J.K., Hyun, O.C., Lee, J.I.: Relations between coal/fly ash properties and cohesive forces in electrostatically precipitated ash layers. KSME Int. J. 5(15), 630–638 (2001)

    Article  Google Scholar 

  7. Tachibana, N., Fujishima, H.: Application of electrostatic precipitation with the intermittent energization. In: Proceedings of the International Conference on Modern Electrostatics, Beijing, China (1988)

    Google Scholar 

  8. Masuda, S.: Einfluss von Temperatur und Feuchte auf die elektrische Leitfähigkeit hoch isolierender Stäube. Staub 25, 175–179 (1965)

    CAS  Google Scholar 

  9. Rothenberg, S.J., Cheng, Y.S.: Coal combustion fly ash characterization—rates of adsorption and desorption of water. J. Phys. Chem. 8, 1644–1649 (1980)

    Article  Google Scholar 

  10. Meschede, D.: Gerthsen Physik, 25 Auflage. Springer (2015). ISBN 978-3-662-45977-5

    Google Scholar 

  11. Rose, H.E., Wood, A.J.: An Introduction to Electrostatic Precipitation in Theory and Practice. Constable & Company Ltd. (1966). ISBN 978-0094553408

    Google Scholar 

  12. Schubert, H.: Handbuch der Mechanischen Verfahrenstechnik, 1 Auflage. Wiley-VCH Verlag (2003). ISBN 978-3527305773

    Google Scholar 

  13. Riebel, U., Aleksin, Y., Vora, A.: Das elektrische Verhalten hochohmiger Stäube. Chem. Ing. Tech. 85, 235–244 (2013)

    Article  CAS  Google Scholar 

  14. Majid, M.: Dust resistivity and re-circulation in electrostatic precipitators. Ph.D. thesis, Technische Universität Dortmund (2012)

    Google Scholar 

  15. Erhard, D.: High performance polymer electrets. Ph.D. thesis, Universität Bayreuth (2010)

    Google Scholar 

  16. Hilczer, B., Malecki, J.: Electrets. Elsevier (1986). ISBN 978-0444995476

    Google Scholar 

  17. Sessler, G.M., West, J.E.: Self biased condenser microphone with high capacitance. J. Acoust. Soc. Am. 40, 1433–1440 (1966)

    Article  Google Scholar 

  18. Sessler, G.M., West, J.E.: Electret transducers: a review. J. Acoust. Soc. Am. 53, 1589–1600 (1973)

    Article  Google Scholar 

  19. Gauckler, L.J., Conder, K.: Ceramics II. Lecture Notes. ETH Zürich (2010)

    Google Scholar 

  20. Pieloth, D., Wiggers, H., Walzel, P.: Thermodynamic material and bulk property influence on electric resistivity of particle layers. Chem. Eng. Technol. 37(4), 627–634 (2014)

    Article  CAS  Google Scholar 

  21. Wiggers, H.: Measurement of dust resistivity—back corona in electrostatic precipitators. VGB Power Tech. 3, 93–96 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for the financial support of this project. We also acknowledge Prof. Dr.-Ing. U. Riebel for his valuable contributions to the scientific discussion of the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Pieloth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieloth, D., Wiggers, H., Walzel, P. (2019). Non-ohmic Properties of Particle Layers in Electrostatic Precipitators. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_19

Download citation

Publish with us

Policies and ethics