Skip to main content

Rapid Impact of Nanoparticles on Surfaces

  • Chapter
  • First Online:
  • 769 Accesses

Abstract

The collision of gas-borne particles with surfaces plays an important role in many processes of particle technology such as particle separation, dry dispersion of powders and particle measuring techniques. While for coarse particles comprehensive investigations have been performed regarding sticking and bouncing behavior, in the range of nanoparticles new issues arise e.g. the influence of adhesive forces and of restructuring during plastic deformation on the impact process. In this contribution the different interactions (elastic and plastic deformation, friction, adhesion, charge transfer) between single particles as well as agglomerates impacting on solid substrates are elucidated by a combination of simulations and experiments. It was found, that size-dependent material parameters can be used to describe the collision of nanoparticles with solid substrates using continuum approaches. The effect of the impaction on the restructuring and fragmentation was investigated leading towards a dry dispersion method for nanoparticle agglomerates at ambient pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antony, S.J., Moreno-Atanasio, R., Musadaidzwa, J., Williams, R.A.: Impact fracture of composite and homogeneous nanoagglomerates. J. Nanomater. 2008, 125,386 (2008). https://doi.org/10.1155/2008/125386

    Article  Google Scholar 

  2. Armstrong, P., Peukert, W.: Size effects in the elastic deformation behavior of metallic nanoparticles. J. Nanoparticle Res. 14, 1–13 (2012). https://doi.org/10.1007/s11051-012-1288-4

  3. Bitter, J.G.A.: A study of erosion phenomena part 1. Wear 6(1), 5–21 (1963). https://doi.org/10.1016/0043-1648(63)90003-6

    Article  Google Scholar 

  4. Brilliantov, N.V., Albers, N., Spahn, F., Pöschel, T.: Collision dynamics of granular particles with adhesion. Phys. Rev. E 76(5) (2007). https://doi.org/10.1103/PhysRevE.76.0513020

  5. Brilliantov, N.V., Albers, N., Spahn, F., Pöschel, T.: Erratum: Collision dynamics of granular particles with adhesion [Physical Review e 76, 051302 (2007)]. Phys. Rev. E 87(3) (2013). https://doi.org/10.1103/PhysRevE.87.039904

  6. Dahneke, B.: The capture of aerosol particles by surfaces. J. Colloid Interface Sci. 37(2), 342–353 (1971). https://doi.org/10.1016/0021-9797(71)90302-X

    Article  CAS  Google Scholar 

  7. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  8. Froeschke, S., Kohler, S., Weber, A.P., Kasper, G.: Impact fragmentation of nanoparticle agglomerates. J. Aerosol Sci. 34(3), 275–287 (2003). https://doi.org/10.1016/S0021-8502(02)00185-4

    Article  CAS  Google Scholar 

  9. Gensch, M., Weber, A.: Fragmentierung von gasgetragenen Nanopartikel-Agglomeraten bei schräger Impaktion. Chem. Ing. Tech. 86(3), 270–279 (2014). https://doi.org/10.1002/cite.201300134

    Article  CAS  Google Scholar 

  10. Gensch, M.: Mechanische Stabilität von Nanopartikel-Agglomeraten bei mechanischen Belastungen. PhD Thesis TU Clausthal, Shaker Verlag, ISBN 978-3-8440-6110-9 (2018)

    Google Scholar 

  11. Givehchi, R., Tan, Z.: An overview of airborne nanoparticle filtration and thermal rebound theory. Aerosol Air Qual. Res. 14(1), 46–63 (2014). https://doi.org/10.4209/aaqr.2013.07.0239

    Article  CAS  Google Scholar 

  12. Halicioǧlu, T., Pound, G.M.: Calculation of potential energy parameters form crystalline state properties. Phys. Status Solidi (a) 30(2), 619–623 (1975). https://doi.org/10.1002/pssa.2210300223

  13. Ihalainen, M., Lind, T., Ruusunen, J., Tiitta, P., Lähde, A., Torvela, T., Jokiniemi, J.: Experimental study on bounce of submicron agglomerates upon inertial impaction. Powder Technol. 268, 203–209 (2014). https://doi.org/10.1016/j.powtec.2014.08.029

    Article  CAS  Google Scholar 

  14. Kiener, D., Minor, A.M.: Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Mater. 59(4), 1328–1337 (2011). https://doi.org/10.1016/j.actamat.2010.10.065

    Article  CAS  Google Scholar 

  15. Kim, J.Y., Greer, J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57(17), 5245–5253 (2009). https://doi.org/10.1016/j.actamat.2009.07.027

    Article  CAS  Google Scholar 

  16. Konstandopoulos, A.G.: Particle sticking/rebound criteria at oblique impact. J. Aerosol Sci. 37(3), 292–305 (2006). https://doi.org/10.1016/j.jaerosci.2005.05.019

    Article  CAS  Google Scholar 

  17. Kuninaka, H., Hayakawa, H.: Simulation of cohesive head-on collisions of thermally activated nanoclusters. Phys. Rev. E 79(3) (2009). https://doi.org/10.1103/PhysRevE.79.031309

  18. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43(2), 645–646 (1972). https://doi.org/10.1214/aoms/1177692644

    Article  Google Scholar 

  19. Maze, B., Vahedi, H.T., Wang, Q., Pourdeyhimi, B.: A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J. Aerosol Sci. 38(5), 550–571 (2007). https://doi.org/10.1016/j.jaerosci.2007.03.008

    Article  CAS  Google Scholar 

  20. Miles, R.E.: On random rotations in \(\text{ R }^3\). Biometrika 52(3–4), 636–639 (1965). https://doi.org/10.1093/biomet/52.3-4.636

    Article  Google Scholar 

  21. Müller, P., Pöschel, T.: Oblique impact of frictionless spheres: on the limitations of hard sphere models for granular dynamics. Granul. Matter 14(2), 115–120 (2012). https://doi.org/10.1007/s10035-012-0324-5

    Article  Google Scholar 

  22. Müller, P., Pöschel, T.: Event-driven molecular dynamics of soft particles. Phys. Rev. E 87(3), 033,301 (2013). https://doi.org/10.1103/PhysRevE.87.033301

  23. Müller, P., Krengel, D., Pöschel, T.: Negative coefficient of normal restitution. Phys. Rev. E 85(4), 041,306 (2012). https://doi.org/10.1103/PhysRevE.85.041306

  24. Ning, Z., Boerefijn, R., Ghadiri, M., Thornton, C.: Distinct element simulation of impact breakage of lactose agglomerates. Adv. Powder Technol. 8(1), 15–37 (1997). https://doi.org/10.1016/S0921-8831(08)60477-X

    Article  CAS  Google Scholar 

  25. Nowak, J.D., Beaber, A.R., Ugurlu, O., Girshick, S.L., Gerberich, W.W.: Small size strength dependence on dislocation nucleation. Scr. Mater. 62(11), 819–822 (2010). https://doi.org/10.1016/j.scriptamat.2010.01.026

    Article  CAS  Google Scholar 

  26. Ostendorf, F., Schmitz, C., Hirth, S., Kühnle, A., Kolodziej, J.J., Reichling, M.: How flat is an air-cleaved mica surface? Nanotechnology 19(30), 305,705 (2008). https://doi.org/10.1088/0957-4484/19/30/305705

    Article  CAS  Google Scholar 

  27. Pöschel, T., Müller, P.: Event-driven DEM of soft spheres. AIP Conf. Proc. 1542, 149–152 (2013). https://doi.org/10.1063/1.4811889

    Article  Google Scholar 

  28. Pöschel, T., Brilliantov, N.V., Formella, A., Heckel, M., Krülle, C., Müller, P., Salueña, C., Schwager, T.: Contact of granular particles and the simulation of rapid flows using event-driven molecular dynamics. Eur. J. Environ. Civ. Eng. 12(7–8), 827–870 (2008). https://doi.org/10.1080/19648189.2008.9693051

    Article  Google Scholar 

  29. Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60(4), 4465–4472 (1999). https://doi.org/10.1103/PhysRevE.60.4465

    Article  Google Scholar 

  30. Rennecke, S.: Kontaktphänomene bei Hochgeschwindigkeitskollisionen von Nanopartikeln mit Oberflächen. Ph.D. thesis, TU Clausthal (2015)

    Google Scholar 

  31. Rennecke, S., Weber, A.P.: A novel model for the determination of nanoparticle impact velocity in low pressure impactors. J. Aerosol Sci. 55, 89–103 (2013). https://doi.org/10.1016/j.jaerosci.2012.07.014

    Article  CAS  Google Scholar 

  32. Rennecke, S., Weber, A.P.: On the pressure dependence of thermal rebound. J. Aerosol Sci. 58, 129–134 (2013). https://doi.org/10.1016/j.jaerosci.2013.01.006

    Article  CAS  Google Scholar 

  33. Rennecke, S., Weber, A.: Charge transfer to metal nanoparticles bouncing from conductive surfaces. Aerosol Sci. Technol. 48(10), 1059–1069 (2014). https://doi.org/10.1080/02786826.2014.955566

    Article  CAS  Google Scholar 

  34. Richter, G., Hillerich, K., Gianola, D.S., Mönig, R., Kraft, O., Volkert, C.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9(8), 3048–3052 (2009). https://doi.org/10.1021/nl9015107

    Article  CAS  Google Scholar 

  35. Sator, N., Hietala, H.: Damage in impact fragmentation. Int. J. Fract. 163(1), 101–108 (2010). https://doi.org/10.1007/s10704-009-9406-8

    Article  Google Scholar 

  36. Schmid, E., Boas, W.: Plasticity of Crystals. F. A. Hughes & Co Ltd., London (1950)

    Google Scholar 

  37. Schöner, C., Pöschel, T.: Orientation-dependent properties of nanoparticle impact. Phys. Rev. E 98(2), 022,902 (2018). https://doi.org/10.1103/PhysRevE.98.022902

  38. Schöner, C., Rennecke, S., Weber, A.P., Pöschel, T.: Introduction of a new technique to measure the coefficient of restitution for nanoparticles. Chem. Ing. Tech. 86(3), 365–374 (2014). https://doi.org/10.1002/cite.201300132

    Article  CAS  Google Scholar 

  39. Schwager, T.: Coefficient of restitution for viscoelastic disks. Phys. Rev. E 75(5), 051,305 (2007). https://doi.org/10.1103/PhysRevE.75.051305

  40. Schwager, T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57(1), 650–654 (1998). https://doi.org/10.1103/PhysRevE.57.650

    Article  CAS  Google Scholar 

  41. Schwager, T., Pöschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9(6), 465–469 (2007). https://doi.org/10.1007/s10035-007-0065-z

    Article  Google Scholar 

  42. Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery. Phys. Rev. E 78(5), 051,304 (2008). https://doi.org/10.1103/PhysRevE.78.051304

  43. Schwager, T., Becker, V., Pöschel, T.: Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27(1), 107–114 (2008). https://doi.org/10.1140/epje/i2007-10356-3

    Article  CAS  Google Scholar 

  44. Seipenbusch, M., Toneva, P., Peukert, W., Weber, A.P.: Impact fragmentation of metal nanoparticle agglomerates. Part. Part. Syst. Charact. 24(3), 193–200 (2007). https://doi.org/10.1002/ppsc.200601089

    Article  CAS  Google Scholar 

  45. Seipenbusch, M., Rothenbacher, S., Kirchhoff, M., Schmid, H.J., Kasper, G., Weber, A.P.: Interparticle forces in silica nanoparticle agglomerates. J. Nanoparticle Res. 12(6), 2037–2044 (2010). https://doi.org/10.1007/s11051-009-9760-5

    Article  CAS  Google Scholar 

  46. Shafiei Mohammadabadi, A., Dehghani, K.: A new model for inverse Hall-Petch relation of nanocrystalline materials. J. Mater. Eng. Perform. 17(5), 662–666 (2008). https://doi.org/10.1007/s11665-008-9206-8

    Article  CAS  Google Scholar 

  47. Subero, J., Ghadiri, M.: Breakage patterns of agglomerates. Powder Technol. 120(3), 232–243 (2001). https://doi.org/10.1016/S0032-5910(01)00276-5

    Article  CAS  Google Scholar 

  48. Subero, J., Ning, Z., Ghadiri, M., Thornton, C.: Effect of interface energy on the impact strength of agglomerates. Powder Technol. 105(1), 66–73 (1999). https://doi.org/10.1016/S0032-5910(99)00119-9

    Article  CAS  Google Scholar 

  49. Subero-Couroyer, C., Ghadiri, M., Brunard, N., Kolenda, F.: Analysis of catalyst particle strength by impact testing: the effect of manufacturing process parameters on the particle strength. Powder Technol. 160(2), 67–80 (2005). https://doi.org/10.1016/j.powtec.2005.08.005

    Article  CAS  Google Scholar 

  50. Tomsic, A., Marković, N., Pettersson, J.B.C.: Scattering of ice particles from a graphite surface: a molecular dynamics simulation study. J. Phys. Chem. B 107(38), 10576–10582 (2003). https://doi.org/10.1021/jp030557b

    Article  CAS  Google Scholar 

  51. Tsai, C.J., Pui, D.Y.H., Liu, B.Y.H.: Capture and rebound of small particles upon impact with solid surfaces. Aerosol Sci. Technol. 12(3), 497–507 (1990). https://doi.org/10.1080/02786829008959364

    Article  CAS  Google Scholar 

  52. Vogel, L., Peukert, W.: From single particle impact behaviour to modelling of impact mills. Chem. Eng. Sci. 60(18), 5164–5176 (2005). https://doi.org/10.1016/j.ces.2005.03.064

    Article  CAS  Google Scholar 

  53. Wang, H.C., John, W.: Dynamic contact charge transfer considering plastic deformation. J. Aerosol Sci. 19(4), 399–411 (1988). https://doi.org/10.1016/0021-8502(88)90016-X

    Article  CAS  Google Scholar 

  54. Wang, H.C., Kasper, G.: Filtration efficiency of nanometer-size aerosol particles. J. Aerosol Sci. 22(1), 31–41 (1991). https://doi.org/10.1016/0021-8502(91)90091-U

    Article  CAS  Google Scholar 

  55. Weber, A.P., Friedlander, S.K.: Relation between coordination number and fractal dimension of aerosol agglomerates. J. Aerosol Sci. 28, S765–S766 (1997). https://doi.org/10.1016/S0021-8502(97)85381-5

    Article  CAS  Google Scholar 

  56. Weir, G., McGavin, P.: The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 464(2093), 1295–1307 (2008). https://doi.org/10.1098/rspa.2007.0289

    Article  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for funding through the Cluster of Excellence “Engineering of Advanced Materials”, the Collaborative Research Center SFB814, and Grants No. PO472/20 and WE 2331/12-1-3. We gratefully acknowledge the computing time granted by the John von Neumann Institute for Computing and provided on the supercomputer JUROPA at Jülich Supercomputing Centre.

We thank the colleagues involved in the SPP for intensive discussion and steady support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weber, A., Schöner, C., Gensch, M., Werner, A., Pöschel, T. (2019). Rapid Impact of Nanoparticles on Surfaces. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_17

Download citation

Publish with us

Policies and ethics