Skip to main content

Deformation and Friction at the Microscale—From Model Experiments to Process Characterization

  • Chapter
  • First Online:
Particles in Contact

Abstract

One of the grand challenges in Particle Technology is how to characterize the contact mechanisms and contact forces between particles. The mechanics of particles across all length scales down to the nanoscale are highly relevant for many applications including adhesion, friction, powder flow, comminution and tribology. Particular interesting new fields are additive manufacturing and 3D printing which “promise” a revolution in industrial manufacturing based on powder technologies. Mechanical particle properties are also the key parameters in discrete element models (DEM) which have been developed during the last decades and gradually reach “predictive power”. In order to make DEM truly predictive, intrinsic material properties such as Young’s modulus, hardness, plastic deformation or fracture toughness of the particles must be known quantitatively. However, measured mechanical particle properties (and their distributions) are only known in a few rare cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peukert, W., Segets, D., Pflug, L., Leugering, G.: Unified design strategies for particulate products. In: Advances in Chemical Engineering, Mesoscale Modeling in Chemical Engineering Part I, pp. 1–81. Elsevier (2015)

    Google Scholar 

  2. Romeis, S., Paul, J., Ziener, M., Peukert, W.: A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM. Rev. Sci. Instrum. 83, 95105 (2012)

    Article  CAS  Google Scholar 

  3. Romeis, S., Paul, J., Hanisch, M., Marthala, V.R.R., Hartmann, M., Taylor, R.N.Klupp, Schmidt, J., Peukert, W.: Correlation of enhanced strength and internal structure for heat-treated submicron Stöber silica particles. Part. Part. Syst. Char. 31, 664–674 (2014)

    Article  CAS  Google Scholar 

  4. Paul, J., Romeis, S., Mačković, M., Marthala, V., Herre, P., Przybilla, T., Hartmann, M., Spiecker, E., Schmidt, J., Peukert, W.: In situ cracking of silica beads in the SEM and TEM—effect of particle size on structure-property correlations. Powder Technol. 270, 337–347 (2015)

    Article  CAS  Google Scholar 

  5. Romeis, S., Paul, J., Herre, P., de Ligny, D., Schmidt, J., Peukert, W., de Ligny, D., Peukert, W.: Local densification of a single micron sized silica sphere by uniaxial compression. Scr. Mater. 108, 84–87 (2015)

    Article  CAS  Google Scholar 

  6. Herre, P., Romeis, S., Mačković, M., Przybilla, T., Paul, J., Schwenger, J., Torun, B., Grundmeier, G., Spiecker, E., Peukert, W., Przybilla, T.: Deformation behavior of nanocrystalline titania particles accessed by complementary in situ electron microscopy techniques. J. Am. Ceram. Soc. 330/100, 556 (2017)

    Google Scholar 

  7. Paul, J., Romeis, S., Tomas, J., Peukert, W.: A review of models for single particle compression and their application to silica microspheres. Adv. Powder Technol. 25, 136–153 (2014)

    Article  CAS  Google Scholar 

  8. Romeis, S., Schmidt, J., Peukert, W.: Mechanochemical aspects in wet stirred media milling. Int. J. Miner. Process. 156, 24–31 (2016)

    Article  CAS  Google Scholar 

  9. Dörfler, A., Detsch, R., Romeis, S., Schmidt, J., Eisermann, C., Peukert, W., Boccaccini, A.R., Dörfler, A., Detsch, R., Schmidt, J., Eisermann, C., Peukert, W., Boccaccini, A.R.: Biocompatibility of submicron Bioglass® powders obtained by a top-down approach. J. Biomed. Mater. Res. 102, 952–961 (2014)

    Article  Google Scholar 

  10. Romeis, S., Hoppe, A., Eisermann, C., Schneider, N., Boccaccini, A.R., Schmidt, J., Peukert, W., Hoppe, A., Eisermann, C., Schneider, N., Boccaccini, A.R., Schmidt, J., Peukert, W., Bose, S.: Enhancing in vitro bioactivity of melt-derived 45S5 Bioglass® by comminution in a stirred media mill. J. Am. Ceram. Soc. 97, 150–156 (2014)

    Article  CAS  Google Scholar 

  11. Paul, J., Romeis, S., Herre, P., Peukert, W.: Deformation behavior of micron-sized polycrystalline gold particles studied by in situ compression experiments and frictional finite element simulation. Powder Technol. 286, 706–715 (2015)

    Article  CAS  Google Scholar 

  12. Conrad, H., Jung, K.: Effect of grain size from mm to nm on the flow stress and plastic deformation kinetics of Au at low homologous temperatures. Mater. Sci. Eng. A Struct. 406, 78–85 (2005)

    Article  Google Scholar 

  13. Tabor, D.: The Hardness of Metals. Oxford University Press, Oxford (2000)

    Google Scholar 

  14. Gane, N., Cox, J.M.: The micro-hardness of metals at very low loads. Philos. Mag. 22, 881–891 (1970)

    Article  CAS  Google Scholar 

  15. Chaudhri, M.M., Hutchings, I.M., Makin, P.L.: Plastic compression of spheres. Philos. Mag. A 493–503 (1984)

    Article  Google Scholar 

  16. Bain, C.D., Whitesides, G.M.: Depth sensitivity of wetting: monolayers of omega-mercapto ethers on gold. J. Am. Chem. Soc. 110, 5897–5898 (1988)

    Article  CAS  Google Scholar 

  17. Rumpel, A., Novak, M., Walter, J., Braunschweig, B., Halik, M., Peukert, W.: Tuning the molecular order of C60 functionalized phosphonic acid monolayers. Langmuir 27, 15016–15023 (2011)

    Article  CAS  Google Scholar 

  18. Lin, Y.-Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N.: Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron. Device Lett. 18, 606–608 (1997)

    Article  CAS  Google Scholar 

  19. Chaki, N.K., Vijayamohanan, K.: Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17, 1–12 (2002)

    Article  CAS  Google Scholar 

  20. Perry, S.S., Lee, S., Shon, Y.-S., Colorado, J.R., Lee, T.R.: The relationships between interfacial friction and the conformational order of organic thin films. Tribol. Lett. 10, 81–87 (2001)

    Article  CAS  Google Scholar 

  21. Cheng, H., Hu, Y.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication. Adv. Colloid Interface Sci. 171–172, 53–65 (2012)

    Article  Google Scholar 

  22. Bhushan, B.: Nanotribology and Nanomechanics: An Introduction, 2nd edn. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  23. Ecke, S., Butt, H.-J.: Friction between Individual Microcontacts. J. Colloid Interface Sci. 244, 432–435 (2001)

    Article  CAS  Google Scholar 

  24. Ruths, M., Alcantar, N.A., Israelachvili, J.N.: Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149–11157 (2003)

    Article  CAS  Google Scholar 

  25. Berman, A., Steinberg, S., Campbell, S., Ulman, A., Israelachvili, J.: Controlled microtribology of a metal oxide surface. Tribol. Lett. 4, 43–48 (1998)

    Article  CAS  Google Scholar 

  26. Yu, J., Banquy, X., Greene, G.W., Lowrey, D.D., Israelachvili, J.N.: The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir 28, 2244–2250 (2012)

    Article  CAS  Google Scholar 

  27. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  28. Qian, L., Charlot, M., Perez, E., Luengo, G., Potter, A., Cazeneuve, C.: Dynamic friction by polymer/surfactant mixtures adsorbed on surfaces. J. Phys. Chem. B 108, 18608–18614 (2004)

    Article  CAS  Google Scholar 

  29. Cui, B., Zhang, L., Zhou, H., Zhang, J., Chen, J.: Preparation and tribological properties of self-assembled poly(amide amine)-Cu nanofilm on silicon. Surf. Interface Anal. 43, 1377–1381 (2011)

    Article  CAS  Google Scholar 

  30. Meltzer, C., Paul, J., Dietrich, H., Jäger, C.M., Clark, T., Zahn, D., Braunschweig, B., Peukert, W.: Indentation and self-healing mechanisms of a self-assembled monolayer—a combined experimental and modeling study. J. Am. Chem. Soc. 136, 10718–10727 (2014)

    Article  CAS  Google Scholar 

  31. Du, Q., Xiao, X.-D., Charych, D., Wolf, F., Frantz, P., Shen, Y.R., Salmeron, M.: Nonlinear optical studies of monomolecular films under pressure. Phys. Rev. B 51, 7456–7463 (1995)

    Article  CAS  Google Scholar 

  32. Beattie, D.A., Fraenkel, R., Winget, S.A., Petersen, A., Bain, C.D.: Sum-frequency spectroscopy of a monolayer of zinc arachidate at the solid-solid interface. J. Phys. Chem. B 110, 2278–2292 (2006)

    Article  CAS  Google Scholar 

  33. Paul, J., Meltzer, C., Braunschweig, B., Peukert, W.: Lubrication of individual microcontacts by a self-assembled alkyl phosphonic acid monolayer on α-Al2O3(0001). Langmuir 32, 8298–8306 (2016)

    Article  CAS  Google Scholar 

  34. Nishi, N., Hobara, D., Yamamoto, M., Kakiuchi, T.: Chain-length-dependent change in the structure of self-assembled monolayers of n-alkanethiols on Au(111) probed by broad-bandwidth sum frequency generation spectroscopy. J. Chem. Phys. 118, 1904–1911 (2003)

    Article  CAS  Google Scholar 

  35. Lambert, A.G., Davies, P.B., Neivandt, D.J.: Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 40, 103–145 (2005)

    Article  CAS  Google Scholar 

  36. Novak, M., Schmaltz, T., Faber, H., Halik, M.: Influence of self-assembled monolayer dielectrics on the morphology and performance of α, ω-dihexylquaterthiophene in thin film transistors. Appl. Phys. Lett. 98, 93302 (2011)

    Article  Google Scholar 

  37. Ward, R.N., Duffy, D.C., Davies, P.B., Bain, C.D.: Sum-frequency spectroscopy of surfactants adsorbed at a flat hydrophobic surface. J. Phys. Chem. 98, 8536–8542 (1994)

    Article  CAS  Google Scholar 

  38. Tyrode, E., Hedberg, J.: A comparative study of the CD and CH stretching spectral regions of typical surfactants systems using VSFS: orientation analysis of the terminal CH3 and CD3 groups. J. Phys. Chem. C 116, 1080–1091 (2011)

    Article  Google Scholar 

  39. Guyot-Sionnest, P., Hunt, J.H., Shen, Y.R.: Sum-frequency vibrational spectroscopy of a Langmuir film: study of molecular orientation of a two-dimensional system. Phys. Rev. Lett. 59, 1597–1600 (1987)

    Article  CAS  Google Scholar 

  40. Bauer, T., Schmaltz, T., Lenz, T., Halik, M., Meyer, B., Clark, T.: Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl. Mater. Interfaces 5, 6073–6080 (2013)

    Article  CAS  Google Scholar 

  41. Jäger, C.M., Schmaltz, T., Novak, M., Khassanov, A., Vorobiev, A., Hennemann, M., Krause, A., Dietrich, H., Zahn, D., Hirsch, A., Halik, M., Clark, T.: Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. J. Am. Chem. Soc. 135, 4893–4900 (2013)

    Article  Google Scholar 

  42. Liakos, I.L., Newman, R.C., McAlpine, E., Alexander, M.R.: Comparative study of self-assembly of a range of monofunctional aliphatic molecules on magnetron-sputtered aluminium. Surf. Interface Anal. 36, 347–354 (2004)

    Article  CAS  Google Scholar 

  43. Hauffman, T., Blajiev, O., Snauwaert, J., van Haesendonck, C., Hubin, A., Terryn, H.: Study of the self-assembling of n-octylphosphonic acid layers on aluminum oxide. Langmuir 24, 13450–13456 (2008)

    Article  CAS  Google Scholar 

  44. Luschtinetz, R., Oliveira, A.F., Duarte, H.A., Seifert, G.: Self-assembled monolayers of alkylphosphonic acids on aluminum oxide surfaces—a theoretical study. Z. Anorg. Allg. Chem. 636, 1506–1512 (2010)

    Article  CAS  Google Scholar 

  45. Hoque, E., Derose, J.A., Hoffmann, P., Mathieu, H.J., Bhushan, B., Cichomski, M.: Phosphonate self-assembled monolayers on aluminum surfaces. J. Chem. Phys. 124, 174710 (2006)

    Article  CAS  Google Scholar 

  46. Foster, T.T., Alexander, M.R., Leggett, G.J., McAlpine, E.: Friction force microscopy of alkylphosphonic acid and carboxylic acids adsorbed on the native oxide of aluminum. Langmuir 22, 9254–9259 (2006)

    Article  CAS  Google Scholar 

  47. Brukman, M.J., Oncins Marco, G., Dunbar, T.D., Boardman, L.D., Carpick, R.W.: Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity. Langmuir 22, 3988–3998 (2006)

    Article  CAS  Google Scholar 

  48. Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999)

    Article  CAS  Google Scholar 

  49. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  CAS  Google Scholar 

  50. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  51. Jones, R.: From single particle AFM studies of adhesion and friction to bulk flow: forging the links. Granul. Matter 4, 191–204 (2003)

    Article  CAS  Google Scholar 

  52. Biggs, S., Scales, P.J., Leong, Y.-K., Healy, T.W.: Effects of citrate adsorption on the interactions between zirconia surfaces. Faraday Trans. 91, 2921 (1995)

    Article  CAS  Google Scholar 

  53. Derjaguin, B., Muller, V., Toporov, Y.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  CAS  Google Scholar 

  54. Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)

    Article  CAS  Google Scholar 

  55. Bhushan, B., Liu, H.: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B 63, 607 (2001)

    Article  Google Scholar 

  56. Mino, N., Ogawa, K., Minoda, T., Takatsuka, M., Sha, S., Moriizumi, T.: Thin film characteristics of fluorine-substituted monolayers prepared by chemical adsorption from solution. Thin Solid Films 230, 209–216 (1993)

    Article  CAS  Google Scholar 

  57. Tutein, A.B., Stuart, S.J., Harrison, J.A.: Role of defects in compression and friction of anchored hydrocarbon chains on diamond. Langmuir 16, 291–296 (2000)

    Article  CAS  Google Scholar 

  58. Müller, F., Polke, R.F.: From the product and process requirements to the milling facility. Powder Technol. 105, 2–13 (1999)

    Article  Google Scholar 

  59. Stadler, R., Polke, R., Schwedes, J., Vock, F.: Naßmahlung in Rührwerksmühlen. Chem. Ing. Tech. 62, 907–915 (1990)

    Article  CAS  Google Scholar 

  60. Orumwense, O.A., Forssberg, E.: Superfine and ultrafine grinding—a literature survey. Miner. Process. Extr. Metall. Rev. 11, 107–127 (1992)

    Article  Google Scholar 

  61. Knieke, C., Steinborn, C., Romeis, S., Peukert, W., Breitung-Faes, S., Kwade, A.: Nanoparticle production with stirred-media mills: opportunities and limits. Chem. Eng. Technol. 33, 1401–1411 (2010)

    Article  CAS  Google Scholar 

  62. Kwade, A., Schwedes, J.: Wet comminution in stirred media mills. KONA 15, 91–102 (1997)

    Article  CAS  Google Scholar 

  63. Peukert, W.: Material properties in fine grinding. Int. J. Miner. Process. 74, S3–S17 (2004)

    Article  CAS  Google Scholar 

  64. Kwade, A.: A stressing model for the description and optimization of grinding processes. Chem. Eng. Technol. 26, 199–205 (2003)

    Article  CAS  Google Scholar 

  65. Juhnke, M.: Evaluation and scale-up of miniaturized rotor–stator impact mills. Powder Technol. 287, 70–76 (2016)

    Article  CAS  Google Scholar 

  66. Schilde, C., Beinert, S., Kwade, A.: Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem. Eng. Sci. 66, 4943–4952 (2011)

    Article  CAS  Google Scholar 

  67. Beinert, S., Schilde, C., Kwade, A.: Simulation of stress energy and grinding media movement within a wet-operated annular-gap mill using the discrete-element method. Chem. Eng. Technol. 35, 1911–1921 (2012)

    Article  CAS  Google Scholar 

  68. Beinert, S., Schilde, C., Gronau, G., Beinert, S., Schilde, C., Gronau, G., Kwade, A.: CFD-discrete element method simulations combined with compression experiments to characterize stirred-media mills. Chem. Eng. Technol. 37, 770–778 (2014)

    Article  CAS  Google Scholar 

  69. Beinert, S., Fragnière, G., Schilde, C., Kwade, A.: Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD–DEM simulations. Chem. Eng. Sci. 134, 648–662 (2015)

    Article  CAS  Google Scholar 

  70. Iwasaki, T., Satoh, M., Takahashi, T.: Estimation of net energy applied to powders in a newly designed bead mill. Powder Technol. 119, 95–101 (2001)

    Article  CAS  Google Scholar 

  71. Iwasaki, T., Kim, J.Hwan, Satoh, M.: Characterization of media mills based on mechanical energy applied to particles. Chem. Eng. Sci. 61, 1065–1073 (2006)

    Article  CAS  Google Scholar 

  72. Strobel, A., Romeis, S., Wittpahl, S., Herre, P., Schmidt, J., Peukert, W.: Characterization of stressing conditions in mills—a comprehensive research strategy based on well-characterized model particles. Powder Technol. 305, 652–661 (2017)

    Article  CAS  Google Scholar 

  73. Strobel, A., Schwenger, J., Wittpahl, S., Schmidt, J., Romeis, S., Peukert, W.: Assessing the influence of viscosity and milling bead size on the stressing conditions in a stirred media mill by single particle probes. Chem. Eng. Res. Des. (2018)

    Google Scholar 

  74. Beinert, S., Kwade, A., Schilde, C.: Strategies for multi-scale simulation of fine grinding and dispersing processes: drag coefficient and fracture of fractal aggregates. Adv. Powder Technol. 29, 707–718 (2018)

    Article  Google Scholar 

  75. Löffler, F., Muhr, W.: Die Abscheidung von Feststoffteilchen und Tropfen an Kreiszylindern infolge von Trägheitskräften. Chem. Ing. Tech. 44, 510–514 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Peukert or Stefan Romeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peukert, W., Romeis, S. (2019). Deformation and Friction at the Microscale—From Model Experiments to Process Characterization. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_13

Download citation

Publish with us

Policies and ethics