Skip to main content

A Contact Model for the Discrete Element Simulations of Aggregated Nanoparticle Films

  • Chapter
  • First Online:
  • 792 Accesses

Abstract

This chapter presents the development of a Discrete Element Method (DEM) contact model for aggregated nanoparticles. Particle synthesis from the gas phase often results in nanoparticles with a primary particle diameter smaller than 20 nm. These particles interact via sinter bridges (aggregates) or weaker adhesion forces such as capillary and solvation forces (agglomerates). Here, we present a set of five DEM contact model components to compute non-covalent adhesion forces (capillary and solvation forces), normal and tangential contact, rolling torque and stiff sinter bridges between nanoparticles with a diameter smaller than 20 nm. This model can represent nanoparticle films comprised of hundreds of thousands of primary particles under mechanical load. Validation against atomic force microscopy (AFM) force distance curves and mechanical compaction up to 3.4 MPa reproduced experiments with striking agreement. The DEM simulations allow us to gain insight into the structure and the restructuring of nanoparticle films that is impossible to obtain from experiments. This can help tailor particle films and coatings in a wide range of applications including catalysis, gas sensing and energy storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This function was removed in LIGGGHTS 3.2 and needs to be implemented from previous versions.

  2. 2.

    https://github.com/UniHB-IWT/LIGGGHTS-Nano.

References

  1. Gockeln, M., Glenneberg, J., Busse, M., Pokhrel, S., Mädler, L., Kun, R.: Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy 49, 564–573 (2018)

    Article  CAS  Google Scholar 

  2. Gockeln, M., Pokhrel, S., Meierhofer, F., Glenneberg, J., Schowalter, M., Rosenauer, A., Fritsching, U., Busse, M., Mädler, L., Kun, R.: Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J. Power Sources 374(Suppl C), 97–106 (2018)

    Article  CAS  Google Scholar 

  3. Dreyer, J.A.H., Riefler, N., Pesch, G.R., Karamehmedovic, M., Fritsching, U., Teoh, W.Y., Mädler, L.: Simulation of gas diffusion in highly porous nanostructures by direct simulation Monte Carlo. Chem. Eng. Sci. 105, 69–76 (2014)

    Article  CAS  Google Scholar 

  4. Kemmler, J., Schopf, S.O., Mädler, L., Barsan, N., Weimar, U.: New process technologies for the deposition of semiconducting metal oxide nanoparticles for sensing. Procedia Eng. 87, 24–27 (2014)

    Article  CAS  Google Scholar 

  5. Mädler, L., Roessler, A., Pratsinis, S.E., Sahm, T., Gurlo, A., Barsan, N., Weimar, U.: Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B: Chem. 114(1), 283–295 (2006)

    Article  Google Scholar 

  6. Pesch, G.R., Riefler, N., Fritsching, U., Colombi Ciacchi, L., Mädler, L.: Gas-solid catalytic reactions with an extended DSMC model. AIChE J. 61(7), 2092–2103 (2015)

    Article  CAS  Google Scholar 

  7. Salameh, S., Scholz, R., Seo, J.W., Mädler, L.: Contact behavior of size fractionated TiO2 nanoparticle agglomerates and aggregates. Powder Technol. 256, 345–351 (2014)

    Article  CAS  Google Scholar 

  8. Schopf, S.O., Salameh, S., Mädler, L.: Transfer of highly porous nanoparticle layers to various substrates through mechanical compression. Nanoscale 5(9), 3764–3772 (2013)

    Article  CAS  Google Scholar 

  9. Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)

    Article  Google Scholar 

  10. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235 (2008)

    Article  Google Scholar 

  11. Pasha, M., Dogbe, S., Hare, C., Hassanpour, A., Ghadiri, M.: A linear model of elasto-plastic and adhesive contact deformation. Granul. Matter 16(1), 151–162 (2014)

    Article  Google Scholar 

  12. Matsui, M., Akaogi, M.: Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol. Simul. 6(4–6), 239–244 (1991)

    Article  Google Scholar 

  13. Schneider, J., Colombi Ciacchi, L.: A classical potential to model the adsorption of biological molecules on oxidized titanium surfaces. J. Chem. Theory Comput. 7(2), 473–484 (2010)

    Article  Google Scholar 

  14. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  CAS  Google Scholar 

  15. Laube, J., Dörmann, M., Schmid, H.J., Mädler, L., Colombi Ciacchi, L.: Dependencies of the adhesion forces between TiO2 nanoparticles on size and ambient humidity. J. Phys. Chem. C 121(28), 15294–15303 (2017)

    Article  CAS  Google Scholar 

  16. Laube, J., Salameh, S., Kappl, M., Mädler, L., Colombi Ciacchi, L.: Contact forces between TiO2 nanoparticles governed by an interplay of adsorbed water layers and roughness. Langmuir 31(41), 11288–11295 (2015)

    Article  CAS  Google Scholar 

  17. Salameh, S., Schneider, J., Laube, J., Alessandrini, A., Facci, P., Seo, J.W., Colombi Ciacchi, L., Mädler, L.: Adhesion mechanisms of the contact interface of TiO2 nanoparticles in films and aggregates. Langmuir 28(31), 11457–11464 (2012)

    Article  CAS  Google Scholar 

  18. Laube, J., Baric, V., Salameh, S., Mädler, L., Colombi Ciacchi, L.: A new contact model for the discrete element method simulation of TiO2 nanoparticles films under mechanical load. Granul. Matter 20(28), 1–16 (2018)

    CAS  Google Scholar 

  19. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier, Oxford, USA (2011)

    Google Scholar 

  20. Hamaker, H.C.: The London—van der Waals attraction between spherical particles. Physica 4(10), 1058–1072 (1937)

    Article  CAS  Google Scholar 

  21. Israelachvili, J.N., Pashley, R.M.: Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940), 249 (1983)

    Article  CAS  Google Scholar 

  22. Israelachvili, J.N.: Solvation forces and liquid structure, as probed by direct force measurements. Acc. Chem. Res. 20(11), 415–421 (1987)

    Article  CAS  Google Scholar 

  23. Ketteler, G., Yamamoto, S., Bluhm, H., Andersson, K., Starr, D.E., Ogletree, D.F., Ogasawara, H., Nilsson, A., Salmeron, M.: The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111(23), 8278–8282 (2007)

    Article  CAS  Google Scholar 

  24. Mamontov, E., Vlcek, L., Wesolowski, D.J., Cummings, P.T., Wang, W., Anovitz, L.M., Rosenqvist, J., Brown, C.M., Garcia Sakai, V.: Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. J. Phys. Chem. C 111(11), 4328–4341 (2007)

    Article  CAS  Google Scholar 

  25. Seipenbusch, M., Rothenbacher, S., Kirchhoff, M., Schmid, H.J., Kasper, G., Weber, A.P.: Interparticle forces in silica nanoparticle agglomerates. J. Nanopart. Res. 12(6), 2037–2044 (2010)

    Article  CAS  Google Scholar 

  26. Amin, S.S., Li, S.Y., Wu, X., Ding, W., Xu, T.T.: Facile synthesis and tensile behavior of TiO2 one-dimensional nanostructures. Nanoscale Res. Lett. 5(2), 338–343 (2009)

    Article  Google Scholar 

  27. Dosta, M., Dale, S., Antonyuk, S., Wassgren, C., Heinrich, S., Litster, J.D.: Numerical and experimental analysis of influence of granule microstructure on its compression breakage. Powder Technol. 299, 87–97 (2016)

    Article  CAS  Google Scholar 

  28. Spettl, A., Bachstein, S., Dosta, M., Goslinska, M., Heinrich, S., Schmidt, V.: Bonded-particle extraction and stochastic modeling of internal agglomerate structures. Adv. Powder Technol. 27(4), 1761–1774 (2016)

    Article  Google Scholar 

  29. Brendel, L., Török, J., Kirsch, R., Bröckel, U.: A contact model for the yielding of caked granular materials. Granul. Matter 13(6), 777–786 (2011)

    Article  Google Scholar 

  30. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  31. Baric, V., Colombi Ciacchi, L., Mädler, L.: Compaction Induced Restructuring of Aggregated Nanoparticle Films Using the Discrete Element Method. Powder Technol. 342, 773–779 (2019)

    Article  CAS  Google Scholar 

  32. Mädler, L., Lall, A.A., Friedlander, S.K.: One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness. Nanotechnology 17(19), 4783–4795 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Mädler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baric, V., Laube, J., Salameh, S., Colombi Ciacchi, L., Mädler, L. (2019). A Contact Model for the Discrete Element Simulations of Aggregated Nanoparticle Films. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_11

Download citation

Publish with us

Policies and ethics