Skip to main content

Perceptual Hash Function for Images Based on Hierarchical Ordinal Pattern

  • Chapter
  • First Online:
Handbook of Multimedia Information Security: Techniques and Applications

Abstract

Distinguishing between the original and manipulated image is now a major issue as digital media can be easily manipulated, due to the advancement of the image processing techniques. A scheme is required to check the integrity of the digital multimedia. Another issue is efficient indexing and retrieval for multimedia data. Traditional indexing methods are time consuming and inefficient. Huge amount of data are generated by the users due to the growth of the Internet, which leads to storing and transmission of large volume of digital data. A perceptual hashing function is an effective solution to provide protection, integrity and authentication. Perceptual hashing function needs to be robust against geometric attacks and distinguish between perceptually different data. A robust perceptual image hash function is being proposed based on ordinal pattern, which were generated hierarchically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stalling, W. (2006). Cryptography and Network Security (4 Edition). Pearson Education: India.

    Google Scholar 

  2. Canova, B. (2011). A Survey of Security Mechanisms to Verify the Integrity and Authenticity of Multimedia–based Data.

    Google Scholar 

  3. Damgård, I. (1990). A design principle for hash functions. In LNCS, CRYPTO, 435: 416–427.

    Google Scholar 

  4. Xiaoyun, W., Xuejia, L., Dengguo, F., Hui, C. and Xiuyuan, Y. (2005). Cryptanalysis of the Hash Functions MD4 and RIPEMD. Advances in Cryptology – Eurocrypt, 3494: 1–18.

    Google Scholar 

  5. Hans, D. (1996). Cryptanalysis of MD4. Fast Software Encryption, 1039: 53–69.

    Google Scholar 

  6. Yuliang, Z., Josef, P. and Jennifer, S. (1993). HAVAL – A One Way Hashing Algorithm with Variable Length of Output. Advances in Cryptology, 718: 83–104.

    Google Scholar 

  7. Ben–Gal, I., Herer, Y. and Raz, T. (2003). Self–correcting inspection procedure under inspection errors. IIE Transactions on Quality and Reliability, 34(6): 529–540.

    Google Scholar 

  8. David, S. and Gayathree, K. (2014). A comparative study of various correcting code. IJCMSC, 3(8): 196–200.

    Google Scholar 

  9. Rivest, R., Shamir, A. and Adleman, L. (1978). A Method for Obtaining Digital Signatures and Public–Key Cryptosystems. Communications of the ACM, 21(2): 120–126.

    Google Scholar 

  10. Coppersmith, D. (1994). The Data Encryption Standard (DES) and its strength against attacks at the Wayback Machine. IBM Journal of Research and Development, 38(3): 243–250.

    Article  Google Scholar 

  11. Kekre, H.B. and Mishra, D. (2011). Content based image retrieval using weighted Hamming distance image hash value. Think Quest, DOI https://doi.org/10.1007/978–81–8489–989–4_53.

    Google Scholar 

  12. Wang, L., Zhang, Y. and Feng, J. (2005). On the Euclidean distance of images. IEEE transactions on Patttern analysis and machine intelligence, 27(8): 1334–1339.

    Article  Google Scholar 

  13. Tang, Z., Dai, Y. and Zhang, X. (2012). Perceptual hashing for color images using invariant moments. Applied Math. Inf. Sci. 6(2): 643S–650S.

    Google Scholar 

  14. Zhenjun, T., Xianquan, Z., Xuan, D., Jianzhong, Y. and Tianxiu, W. (2013). Robust Image Hash Function using local color features. Int. J. Electron. Comm. (AEU), 67(8): 717–722.

    Google Scholar 

  15. Sahana, M.S. and Veera, S.K. (2015). Analysis of Perceptual hashing system for Secure and Robust hashing. IRJET, 2(3): 26–30.

    Google Scholar 

  16. Tang, Z., Li, X., Zhang, X., Zhang, S. and Dai, Y. (2018). Image hashing with color vector.Neurocomputing. 308: 147-158.

    Google Scholar 

  17. Choi, Y. S. and Park, J.H. (2012). Image hash generation method using hierarchical histogram. Multimedia Tools and Applications, Springer, 61(1): 181–194.

    Article  Google Scholar 

  18. Setyawan, I. and Timotius, I.K. (2014). Digital Image hashing using local Histogram of Oriented Gradients. In Proc. International Conference on Information Technology and Electrical Engineering (ICITEE), October 7–8, 2014, pp. 1–4.

    Google Scholar 

  19. Tang, Z., Huang, L., Dai, Y. and Yang, F. (2012). Robust Image Hashing Based on Multiple Histograms. International Journal of Digital Content Technology and its Applications, 6(23): 39–47.

    Google Scholar 

  20. Tang, Z., Dai, Y., Zhang, X., Huang and Yang, F. (2014). Robust image hashing via colour vector angles and DWT. Image Processing, IET, 8(3): 142–149.

    Google Scholar 

  21. Jie, Z. (2013). A novel block DCT and PCA based image perceptual hashing algorithm. International Journal of Computer Science Issues, 10(1): 399–403.

    Google Scholar 

  22. Tang, Z.,Yang, F., Huang, L. and Zhang, X. (2014). Robust image hashing with dominant DCT co–efficients, Optik, 125(18): 5102–5107.

    Article  Google Scholar 

  23. Liu, H., Xiao, D., Xiao, Y. and Zhang, Y. (2015). Robust image hashing with tampering recovery capability via low rank and sparse representation. Multimedia Tools and Application, 74: 1–16.

    Google Scholar 

  24. Davarzani, R., Mozaffri, S. and YashmaieKh. (2015). Image authentication using LBP based perceptual image hashing. Journal of AI and Data Mining, 3(1): 20–29

    Google Scholar 

  25. Neelima, A. and Manglem, Kh. (2016). Perceptual Hash Function based on Scale Invariant Feature Transform and Singular Value Decomposition. The Computer Journal. 59 (9): 1275-1281

    Article  Google Scholar 

  26. Neelima, A. and Manglem, Kh. (2017). Collusion and Rotation Resilient Video Hashing based on Scale Invariant Feature Transform. The Imaging Science Journal. 65 (1): 62-74

    Article  Google Scholar 

  27. Khalid, M.H., Yasmeen, M.K., Walid, I.K. and Ehab, R.M. (2018). Robust Image hashing using quaternion Polar Complex Exponential Transform for Image Authentication. Circuit System Signal Process. https://doi.org/10.1007/s00034-018-0822-8

    Article  Google Scholar 

  28. Ram, K.K., Arunav, S. and Rabul, H.L. (2018). Image Authentication based on robust image hashing with geometric corrections. Multimedia Tools Application. 77(19): 25409- 25429.

    Google Scholar 

  29. Chuana, Q., Xueqin, C, Xiangyang, L, Xinpeng, Z. and Xingming, S. (2018). Perceptual image hashing via dual-cross pattern encoding and salient structure detection. Information Sciences 423: 284-302.

    Article  MathSciNet  Google Scholar 

  30. Ding, K., Meng, F., Liu, Y., Xu, N., and Chen, W. (2018). Perceptual Hashing Based Forensics Scheme for the Integrity Authentication of High Resolution Remote Sensing Image. Information, 9(9): 229-246.

    Article  Google Scholar 

  31. Gharde, N.D., Thounaojam, D.M., Soni, B. (2018). Robust perceptual image hashing using fuzzy color histogram, Multimedia Tools and Application. 77: 30815 https://doi.org/10.1007/s11042-018-6115-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arambam Neelima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neelima, A., Singh, K.M. (2019). Perceptual Hash Function for Images Based on Hierarchical Ordinal Pattern. In: Singh, A., Mohan, A. (eds) Handbook of Multimedia Information Security: Techniques and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-15887-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15887-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15886-6

  • Online ISBN: 978-3-030-15887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics