Skip to main content

Mineral Carbonation for Carbon Capture and Utilization

  • Chapter
  • First Online:

Abstract

The appeal of mineral carbonation (MC) as a process technology for scalable and long-term CO2 reduction, is that it is a solution that has the sequestration capacity to match the amount of CO2 emitted from energy generation and industrial activities [1,2,3]. Many inorganic materials such as minerals [4, 5], incineration ash [6, 7], concrete [8, 9] and industrial residues [10, 11] are potentially huge sinks for anthropogenic CO2 emissions. These materials are typically abundant sources of alkaline and alkaline-earth metal oxides, which can react naturally with CO2 to form inorganic carbonates and bicarbonates. In addition, their products are thermodynamically stable and relatively inert at ambient conditions. On paper, MC should be able to fully sequester all anthropogenic CO2 emissions, since the abundance of magnesium and calcium atoms on Earth far exceeds the total amount of carbon atoms [12, 13]. However, despite the apparently favorable pre-conditions, we still observe a net accumulation of CO2 in the atmosphere because the rates of reaction to form (bi)carbonates in nature are too slow compared to the current rate at which CO2 is being emitted [14, 15]. If left to their own devices, thousands of years are needed to achieve any substantial sequestration of CO2 [16]. This is clearly not rapid enough to solve the pressing problem of climate change that is already affecting us now. Therefore there is a need to employ mineral carbonation as an artificial method to accelerate the rates of CO2 sequestration. In this chapter, we will take a look into the chemistry and thermodynamics of mineral carbonation and discuss some of the main obstacles to large scale MC implementation. Additionally, we highlight the types of starting materials from which basic alkaline-earth metal oxides can be obtained and discuss how their abundance and properties affect MC performance. We will also give a short review of current research in the area to develop MC into viable and economic processes, with some focus on the main categories of process designs and their working principles. We will then look at MC from a techno-economic standpoint and assess the opportunities to integrate MC into the existing industrial and environmental landscape. Lastly, we conclude the chapter with a hypothetical scenario of MC deployment in Singapore, an economically developed but land-scarce country under threat by rising sea levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    CAS  PubMed  Google Scholar 

  2. Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation. Literature review. Energy research Centre of the Netherlands ECN2003

    Google Scholar 

  3. Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115(1–4):73–79

    CAS  Google Scholar 

  4. Geerlings H, Zevenhoven R (2013) CO2 mineralization—bridge between storage and utilization of CO2. Ann Rev Chem Biomol Eng 4(1):103–117

    CAS  Google Scholar 

  5. Sanna A, Maroto-Valer MM (2017) CO2 sequestration by ex-situ mineral carbonation

    Google Scholar 

  6. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater 128(1):73–79

    CAS  PubMed  Google Scholar 

  7. Wee J-H (2013) A review on carbon dioxide capture and storage technology using coal fly ash. Appl Energy 106:143–151

    CAS  Google Scholar 

  8. Mo L, Panesar DK (2013) Accelerated carbonation—a potential approach to sequester CO2 in cement paste containing slag and reactive MgO. Cem Concr Compos 43:69–77

    Google Scholar 

  9. Xi F et al (2016) Substantial global carbon uptake by cement carbonation. Nat Geosci 9:880

    CAS  Google Scholar 

  10. Si C, Ma Y, Lin C (2013) Red mud as a carbon sink: variability, affecting factors and environmental significance. J Hazard Mater 244–245:54–59

    Google Scholar 

  11. Kirchofer A, Becker A, Brandt A, Wilcox J (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47(13):7548–7554

    CAS  PubMed  Google Scholar 

  12. Mcdonough WF, Teisseyre ER, Majewski E (2000) Earthquake thermodynamics and phase transformations in the Earth’s interior

    Google Scholar 

  13. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    CAS  Google Scholar 

  14. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley

    Google Scholar 

  15. Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426(6964):323

    CAS  PubMed  Google Scholar 

  16. White AF (2003) 5.05—natural weathering rates of silicate minerals A2—Holland, Heinrich D. In: Turekian KK (ed) Treatise on geochemistry, Pergamon, Oxford, pp 133–168

    Google Scholar 

  17. Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization, 3:65–73

    Google Scholar 

  18. White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506

    CAS  Google Scholar 

  19. Yuen YT, Sharratt PN, Jie B (2016) Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations. Environ Sci Pollut Res 23(22):22309–22330

    CAS  Google Scholar 

  20. Taulis M (2012) GWCarb v1. 0: carbonate speciation tool

    Google Scholar 

  21. Stumm W, Morgan, JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley

    Google Scholar 

  22. Wanninkhof R et al (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10(3):1983–2000

    CAS  Google Scholar 

  23. Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Carbon emissions and acidification. Science 321(5885):51–52

    CAS  PubMed  Google Scholar 

  24. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681

    CAS  PubMed  Google Scholar 

  25. Wen N, Brooker MH (1995) Ammonium carbonate, ammonium bicarbonate, and ammonium carbamate equilibria: a Raman study. The J Phys Chem 99(1):359–368

    CAS  Google Scholar 

  26. Zhao Y, Zhu G (2007) Thermal decomposition kinetics and mechanism of magnesium bicarbonate aqueous solution. Hydrometallurgy 89(3–4):217–223

    CAS  Google Scholar 

  27. Keener TC, Frazier GC, Davis WT (1985) Thermal decomposition of sodium bicarbonate. Chem Eng Commun 33(1–4):93–105

    CAS  Google Scholar 

  28. Casey WH, Banfield JF, Westrich HR, McLaughlin L (1993) What do dissolution experiments tell us about natural weathering? Chem Geol 105(1–3):1–15

    CAS  Google Scholar 

  29. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337

    CAS  Google Scholar 

  30. Dreybrodt W, Lauckner J, Zaihua L, Svensson U, Buhmann D (1996) The kinetics of the reaction CO2+ H2O→ H++ HCO3− as one of the rate limiting steps for the dissolution of calcite in the system H2O–CO2–CaCO3. Geochim Cosmochim Acta 60(18):3375–3381

    CAS  Google Scholar 

  31. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271

    CAS  Google Scholar 

  32. Cullinane JT, Rochelle GT (2004) Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chem Eng Sci 59(17):3619–3630

    CAS  Google Scholar 

  33. Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55(22):5531–5543

    CAS  Google Scholar 

  34. Ma’mun S, Svendsen HF, Hoff KA, Juliussen O (2007) Selection of new absorbents for carbon dioxide capture. Energy Convers Manag 48(1):251–258

    Google Scholar 

  35. Astarita G, Savage DW, Longo JM (1981) Promotion of CO2 mass transfer in carbonate solutions. Chem Eng Sci 36(3):581–588

    CAS  Google Scholar 

  36. Xie Z, Walther JV (1994) Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25 C. Geochim Cosmochim Acta 58(12):2587–2598

    CAS  Google Scholar 

  37. Brantley, SL (2008) Kinetics of mineral dissolution. Kinetics of water-rock interaction. Springer, pp 151–210

    Google Scholar 

  38. Teir S, Revitzer H, Eloneva S, Fogelholm C-J, Zevenhoven R (2007) Dissolution of natural serpentinite in mineral and organic acids. Int J Miner Process 83(1–2):36–46

    CAS  Google Scholar 

  39. Apostolidis C, Distin P (1978) The kinetics of the sulphuric acid leaching of nickel and magnesium from reduction roasted serpentine. Hydrometallurgy 3(2):181–196

    CAS  Google Scholar 

  40. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer M (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080

    CAS  PubMed  Google Scholar 

  41. Hemmati A, Shayegan J, Bu J, Yeo TY, Sharratt P (2014) Process optimization for mineral carbonation in aqueous phase. Int J Miner Process 130:20–27

    CAS  Google Scholar 

  42. Hemmati A, Shayegan J, Sharratt P, Yeo TY, Bu J (2014) Solid products characterization in a multi-step mineralization process. Chem Eng J 252:210–219

    CAS  Google Scholar 

  43. Zevenhoven R, Slotte M, Koivisto E, Erlund R (2017) Serpentinite carbonation process routes using ammonium sulfate and integration in industry. Energy Technol 5(6):945–954

    CAS  Google Scholar 

  44. Sanna A, Steel L, Maroto-Valer MM (2017) Carbon dioxide sequestration using NaHSO4 and NaOH: a dissolution and carbonation optimisation study. J Environ Manage 189:84–97

    CAS  PubMed  Google Scholar 

  45. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41(7):2587–2593

    CAS  PubMed  Google Scholar 

  46. Ghacham AB, Cecchi E, Pasquier L-C, Blais J-F, Mercier G (2015) CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas–solid–liquid and gas–solid routes. J Environ Manage 163:70–77

    PubMed  Google Scholar 

  47. Smith JM (1950) Introduction to chemical engineering thermodynamics. ACS Publications

    Google Scholar 

  48. Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    CAS  Google Scholar 

  49. Zevenhoven R, Kavaliauskaite I (2010) Mineral carbonation for long-term CO2 storage: an exergy analysis. Int J Thermodyn 7(1):23–31

    Google Scholar 

  50. Huijgen WJ, Ruijg GJ, Comans RN, Witkamp G-J (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45(26):9184–9194

    CAS  Google Scholar 

  51. Goff F, Lackner K (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–101

    Google Scholar 

  52. Alexander E, Wildman W, Lynn W (1985) Ultramafic (serpentinitic) mineralogy class 1. Mineral classification of soils, no. mineralclassifi, pp 135–146

    Google Scholar 

  53. Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2(12):837

    CAS  Google Scholar 

  54. Moody JB (1976) Serpentinization: a review. Lithos 9(2):125–138

    CAS  Google Scholar 

  55. Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Can Mineral 41(4):883–890

    CAS  Google Scholar 

  56. Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Mineral 18(3):319–329

    CAS  Google Scholar 

  57. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46(6):479–506

    Google Scholar 

  58. Lacinska AM et al (2016) Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralisation. Chem Geol 437:153–169

    CAS  Google Scholar 

  59. Farhang F, Rayson M, Brent G, Hodgins T, Stockenhuber M, Kennedy E (2017) Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration. Chem Eng J 330:1174–1186

    CAS  Google Scholar 

  60. Benhelal E et al (2018) Study on mineral carbonation of heat activated lizardite at pilot and laboratory scale. J CO2 Utilization 26:230–238

    Google Scholar 

  61. Rashid MI et al (2018) ACEME: direct aqueous mineral carbonation of dunite rock. Environ Prog Sustain Energy

    Google Scholar 

  62. Dlugogorski BZ, Balucan RD (2014) Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renew Sustain Energy Rev 31:353–367

    CAS  Google Scholar 

  63. Yadav VS, Prasad M, Khan J, Amritphale S, Singh M, Raju C (2010) Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1–3):1044–1050

    CAS  PubMed  Google Scholar 

  64. Bonenfant D et al (2008) CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature. Ind Eng Chem Res 47(20):7617–7622

    CAS  Google Scholar 

  65. Huijgen WJ, Witkamp G-J, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682

    CAS  PubMed  Google Scholar 

  66. Santos RM, Van Bouwel J, Vandevelde E, Mertens G, Elsen J, Van Gerven T (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenhouse Gas Control 17:32–45

    CAS  Google Scholar 

  67. Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122

    CAS  Google Scholar 

  68. Meima JA, van der Weijden RD, Eighmy TT, Comans RN (2002) Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl Geochem 17(12):1503–1513

    CAS  Google Scholar 

  69. Lin WY, Heng KS, Sun X, Wang J-Y (2015) Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Manag 41:75–84

    CAS  PubMed  Google Scholar 

  70. Lin WY, Heng KS, Sun X, Wang J-Y (2015) Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash. Waste Manag 43:264–272

    CAS  PubMed  Google Scholar 

  71. Pan S-Y, Chang E, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791

    CAS  Google Scholar 

  72. Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320

    CAS  Google Scholar 

  73. Paramguru R, Rath P, Misra V (2004) Trends in red mud utilization–a review. Mineral Process Extr Metall Rev 26(1):1–29

    Google Scholar 

  74. Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16(3):230–236

    CAS  Google Scholar 

  75. Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. Mater J 88(4):363–373

    CAS  Google Scholar 

  76. Meima JA, Comans RN (1999) The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl Geochem 14(2):159–171

    CAS  Google Scholar 

  77. Baciocchi R et al (2010) Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manag 30(7):1310–1317

    CAS  PubMed  Google Scholar 

  78. Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27(9):1200–1206

    CAS  PubMed  Google Scholar 

  79. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Petrol Sci Eng 109:364–392

    CAS  Google Scholar 

  80. O’Connor W, Dahlin D, Rush, G, Gerdemann, S, Penner, L, Nilsen D (2005) Aqueous mineral carbonation. Albany Research Center: Albany, OR

    Google Scholar 

  81. O’Connor WK, Dahlin DC, Rush G, Gerdemann SJ, Penner L (2004) Energy and economic considerations for ex-situ and aqueous mineral carbonation. Albany Research Center (ARC), Albany, OR

    Google Scholar 

  82. O’Connor WK, Dahlin DC, Rush G, Dahlin CL, Collins WK (2001) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Albany Research Center (ARC), Albany, OR

    Google Scholar 

  83. O’Connor WK, Dahlin DC, Nilsen DN, Walters RP, Turner PC (2000) Carbon dioxide sequestration by direct aqueous mineral carbonation. Albany Research Center (ARC), Albany, OR

    Google Scholar 

  84. Geerlings JJC, Wesker E (2010) Process for sequestration of carbon dioxide by mineral carbonation. Google Patents

    Google Scholar 

  85. Geerlings JJC, Van Mossel GAF, Veen BCMIT (2010) Process for sequestration of carbon dioxide. Google Patents

    Google Scholar 

  86. Werner M, Hariharan S, Mazzotti M (2014) Flue gas CO2 mineralization using thermally activated serpentine: from single-to double-step carbonation. Phys Chem Chemcal Phys 16(45):24978–24993

    CAS  Google Scholar 

  87. Sun Y, Yao M-S, Zhang J-P, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173(2):437–445

    CAS  Google Scholar 

  88. Bai P, Sharratt P, Yeo TY, Bu J (2011) Production of nanostructured magnesium carbonates from serpentine: implication for flame retardant application. J Nanoeng Nanomanuf 1(3):272–279

    CAS  Google Scholar 

  89. Bu J, Yeo TY, Sharratt P (2018) Method of producing metal carbonate from an ultramafic rock material. Google Patents

    Google Scholar 

  90. Alexander G, Maroto-Valer MM, Gafarova-Aksoy P (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 86(1–2):273–281

    CAS  Google Scholar 

  91. Wang X, Maroto-Valer MM (2011) Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel 90(3):1229–1237

    CAS  Google Scholar 

  92. Littau KA, Torres FE (2013) System and method for recovery of CO2 by aqueous carbonate flue gas capture and high efficiency bipolar membrane electrodialysis. Google Patents

    Google Scholar 

  93. Shuto D et al (2015) CO2 fixation process with waste cement powder via regeneration of alkali and acid by electrodialysis: effect of operation conditions. Ind Eng Chem Res 54(25):6569–6577

    CAS  Google Scholar 

  94. Van der Zee S, Zeman F (2016) Production of carbon negative precipitated calcium carbonate from waste concrete. The Can J Chem Eng 94(11):2153–2159

    Google Scholar 

  95. Naraharisetti PK, Yeo TY, Bu J (2019) New classification of CO2 mineralization processes and economic evaluation. Renew Sustain Energy Rev 99:220–233

    CAS  Google Scholar 

  96. Liu Q, Maroto-Valer MM, Sanna A (2017) Mineral carbonation technology overview. CO2 sequestration by ex-situ mineral carbonation: World Scientific, pp 1–15

    Google Scholar 

  97. Fagerlund J, Nduagu E, Romão I, Zevenhoven R (2012) CO2 fixation using magnesium silicate minerals part 1: process description and performance. Energy 41(1):184–191

    CAS  Google Scholar 

  98. Romão I, Nduagu E, Fagerlund J, Gando-Ferreira LM, Zevenhoven R (2012) CO2 fixation using magnesium silicate minerals. Part 2: energy efficiency and integration with iron-and steelmaking. Energy 41(1):203–211

    Google Scholar 

  99. Highfield J, Lim H, Fagerlund J, Zevenhoven R (2012) Activation of serpentine for CO2 mineralization by flux extraction of soluble magnesium salts using ammonium sulfate. RSC Adv 2(16):6535–6541

    CAS  Google Scholar 

  100. Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46(3):921–926

    CAS  Google Scholar 

  101. Power IM, Harrison AL, Dipple GM, Southam G (2013) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenhouse Gas Control 16:145–155

    CAS  Google Scholar 

  102. Jo BH, Kim IG, Seo JH, Kang DG, Cha HJ (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol pp AEM. 02400-13

    Google Scholar 

  103. Power IM, Harrison AL, Dipple GM (2016) Accelerating mineral carbonation using carbonic anhydrase. Environ Sci Technol 50(5):2610–2618

    CAS  PubMed  Google Scholar 

  104. Seo S, Perez GA, Tewari K, Comas X, Kim M (2018) Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Sci Rep 8(1):11786

    PubMed  PubMed Central  Google Scholar 

  105. Ramsden JJ, Sokolov IJ, Malik DJ (2018) Questioning the catalytic effect of Ni nanoparticles on CO2 hydration and the very need of such catalysis for CO2 capture by mineralization from aqueous solution. Chem Eng Sci 175:162–167

    CAS  Google Scholar 

  106. Hu G, Xiao Z, Smith K, Kentish S, Stevens G, Connal LA (2018) A carbonic anhydrase inspired temperature responsive polymer based catalyst for accelerating carbon capture. Chem Eng J 332:556–562

    CAS  Google Scholar 

  107. Zevenhoven R, Virtanen M (2017) CO2 mineral sequestration integrated with water-gas shift reaction. Energy 141:2484–2489

    CAS  Google Scholar 

  108. Chein R-Y, Yu C-T (2017) Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents. Energy 141:1004–1018

    CAS  Google Scholar 

  109. Naraharisetti PK, Yeo TY, Bu J (2017) Factors influencing CO2 and energy penalties of CO2 mineralization processes. ChemPhysChem 18(22):3189–3202

    CAS  PubMed  Google Scholar 

  110. UEPA (2014) Emission factors for greenhouse gas inventories. Stationary combustion emission factors. US Environmental Protection Agency

    Google Scholar 

  111. Balucan RD, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2013) Energy cost of heat activating serpentinites for CO2 storage by mineralisation. Int J Greenhouse Gas Control 17:225–239

    CAS  Google Scholar 

  112. Perry JH (1950) Chemical engineers’ handbook. ACS Publications

    Google Scholar 

  113. David J, Herzog H The cost of carbon capture. In: Fifth international conference on greenhouse gas control technologies, Cairns, Australia, 2000, pp 13–16

    Google Scholar 

  114. USEPA (1 November 2018) GHG emissions factors hub. Available: https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf

  115. Rezai A, Foley DK, Taylor L (2012) Global warming and economic externalities. Econ Theor 49(2):329–351

    Google Scholar 

  116. Wang Q, Chen X (2015) Energy policies for managing China’s carbon emission. Renew Sustain Energy Rev 50:470–479

    Google Scholar 

  117. Pezzey JC, Jotzo F, Quiggin J (2008) Fiddling while carbon burns: why climate policy needs pervasive emission pricing as well as technology promotion. Aust J Agric Resour Econ 52(1):97–110

    Google Scholar 

  118. Damen K, Faaij A, van Bergen F, Gale J, Lysen E (2005) Identification of early opportunities for CO2 sequestration—worldwide screening for CO2-EOR and CO2-ECBM projects. Energy 30(10):1931–1952

    CAS  Google Scholar 

  119. Mendelevitch R (2014) The role of CO2-EOR for the development of a CCTS infrastructure in the North Sea Region: a techno-economic model and applications. Int J Greenhouse Gas Control 20:132–159

    CAS  Google Scholar 

  120. Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742

    PubMed  Google Scholar 

  121. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32

    CAS  Google Scholar 

  122. Sinnott R (1999) Coulson & Richardson’s chemical enginering: volume 6/chemical engineering design. Elsevier Butterworth Heinemann

    Google Scholar 

  123. Lieberman MB (1984) The learning curve and pricing in the chemical processing industries. Rand J Econ 15(2):213–228

    Google Scholar 

  124. Tribe M, Alpine R (1986) Scale economies and the “0.6 rule”. Eng Costs Prod Econ 10(1):271–278

    Google Scholar 

  125. Whitesides RW (2005) Process equipment cost estimating by ratio and proportion. Course notes, PDH Course G, vol 127

    Google Scholar 

  126. Anderson J (2009) Determining manufacturing costs. CEP, pp 27–31

    Google Scholar 

  127. Liu W et al (2018) Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag. J Alloys Compd

    Google Scholar 

  128. Pasquier L-C, Kemache N, Mocellin J, Blais J-F, Mercier G (2018) Waste concrete valorization; aggregates and mineral carbonation feedstock production. Geosciences 8(9):342

    CAS  Google Scholar 

  129. Chiang P-C, Pan S-Y (2017) Aggregates and high value products. Carbon dioxide mineralization and utilization. Springer, pp 327–334

    Google Scholar 

  130. Yeo TY, Bu J (2017) MC process scale and product applications. CO2 sequestration by ex-situ mineral carbonation: World Scientific, pp 133–165

    Google Scholar 

  131. Di Maria F, Micale C, Sordi A, Cirulli G, Marionni M (2013) Urban mining: quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste. Waste Manag 33(12):2594–2599

    PubMed  Google Scholar 

  132. Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258

    CAS  Google Scholar 

  133. Cossu R, Salieri V, Bisinella, V (2012) Urban mining: a global cycle approach to resource recovery from solid waste. CISA Publication

    Google Scholar 

  134. USGS (1 November 2018) 2015 Minerals Yearbook (Silica). Available: https://minerals.usgs.gov/minerals/pubs/commodity/silica/myb1-2015-silic.pdf

  135. Bai P, Sharratt P, Yeo TY, Bu J (2014) A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine. J Nanosci Nanotechnol 14(9):6915–6922

    CAS  PubMed  Google Scholar 

  136. USGS 2015 Minerals Yearbook (Iron Oxide Pigments). Available: https://minerals.usgs.gov/minerals/pubs/commodity//iron_oxide/myb1-2015-feoxi.pdf

  137. Ashok J, Das S, Yeo T, Dewangan N, Kawi S (2018) Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming. Waste Manag 82:249–257

    CAS  PubMed  Google Scholar 

  138. USGS (1 November 2018) 2015 Minerals yearbook (magnesium compounds). Available: https://minerals.usgs.gov/minerals/pubs/commodity/magnesium/myb1-2015-mgcom.pdf

  139. USGS (1 November 2018) 2015 Minerals yearbook (lime). Available: https://minerals.usgs.gov/minerals/pubs/commodity/lime/myb1-2015-lime.pdf

  140. Khoo HH et al (2011) Carbon capture and mineralization in Singapore: preliminary environmental impacts and costs via LCA. Ind Eng Chem Res 50(19):11350–11357

    CAS  Google Scholar 

  141. Lai S, Loke LH, Hilton MJ, Bouma TJ, Todd PA (2015) The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast Manag 103:78–85

    Google Scholar 

  142. Wang T, Belle I, Hassler U (2015) Modelling of Singapore’s topographic transformation based on DEMs. Geomorphology 231:367–375

    Google Scholar 

  143. Kog Y-C (2006) Environmental management and conflict in Southeast Asia–Land reclamation and its political impact

    Google Scholar 

  144. Franke M (2014) When one country’s land gain is another country’s land loss…: the social, ecological and economic dimensions of sand extraction in the context of world-systems analysis exemplified by Singapore’s sand imports. Working Paper, Institute for International Political Economy Berlin

    Google Scholar 

  145. Torres A, Brandt J, Lear K, Liu J (2017) A looming tragedy of the sand commons. Science 357(6355):970–971

    CAS  PubMed  Google Scholar 

  146. Gavriletea M (2017) Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7):1118

    Google Scholar 

  147. Finenko A, Cheah L (2016) Temporal CO2 emissions associated with electricity generation: Case study of Singapore. Energy Policy 93:70–79

    CAS  Google Scholar 

  148. Lean HH, Smyth R (2010) CO2 emissions, electricity consumption and output in ASEAN. Appl Energy 87(6):1858–1864

    CAS  Google Scholar 

  149. Chan JKH (2016) The ethics of working with wicked urban waste problems: the case of Singapore’s Semakau Landfill. Lands Urban Plan 154:123–131

    Google Scholar 

  150. Deng Y, Li Z, Quigley JM (2012) Economic returns to energy-efficient investments in the housing market: evidence from Singapore. Reg Sci Urban Econ 42(3):506–515

    Google Scholar 

  151. Chung W, Hui Y, Lam YM (2006) Benchmarking the energy efficiency of commercial buildings. Appl Energy 83(1):1–14

    Google Scholar 

  152. Kannan R, Leong K, Osman R, Ho H (2007) Life cycle energy, emissions and cost inventory of power generation technologies in Singapore. Renew Sustain Energy Rev 11(4):702–715

    Google Scholar 

  153. Allcott H, Greenstone M (2012) Is there an energy efficiency gap? J Econ Perspect 26(1):3–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeo, T.Y., Bu, J. (2019). Mineral Carbonation for Carbon Capture and Utilization. In: Aresta, M., Karimi, I., Kawi, S. (eds) An Economy Based on Carbon Dioxide and Water. Springer, Cham. https://doi.org/10.1007/978-3-030-15868-2_4

Download citation

Publish with us

Policies and ethics