Skip to main content

Capture of CO2 from Concentrated Sources and the Atmosphere

  • Chapter
  • First Online:
An Economy Based on Carbon Dioxide and Water

Abstract

As the rapid rise of the atmospheric CO2 concentration has aroused increasing concern worldwide on the global climate change, the research activities in CO2 capture both from the concentrated CO2 sources and the atmosphere have grown significantly. The amine based solid sorbents exhibited great promise in the near-future application for CO2 capture owing to their advantages including high CO2 capacity even at extremely low CO2 concentration (e.g., 400 ppm), excellent CO2 sorption selectivity, no need for moisture pre-removal (moisture even shows promotion effect), lower energy consumption, less corrosion and easy handling compared to liquid amine. Among them, PEI-based sorbents have been considered as one of most promising candidates and have been extensively studied. Great progress has been made in the past two decades. Hence, in this review, we summarize the recent advances with supported PEI sorbents for CO2 capture, with an emphasis on (1) sorbent material development including the effects of support and polymer structure; (2) CO2 sorption mechanism; (3) CO2 sorption kinetics, (4) sorbent deactivation, and (5) practical implementation of PEI-based sorbent materials. At last, the remaining problems and challenges that need to be addressed to improve the competitiveness of sorbent-based capture technologies are discussed. Through the current review, we expect it will not only offer a summary on the recent progress on the supported PEI sorbents, but also provide possible links between fundamental studies and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Climate change 2014 synthesis report summary for policymakers. IPCC. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf

  2. Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL (2016) Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529:477

    CAS  PubMed  Google Scholar 

  3. Smith MR, Myers SS (2018) Impact of anthropogenic CO2 emissions on global human nutrition. Nat Clim Change 8:834–839

    CAS  Google Scholar 

  4. Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    CAS  PubMed  Google Scholar 

  5. Song CS (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    CAS  Google Scholar 

  6. Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678

    CAS  PubMed  Google Scholar 

  7. Lackner KS, Brennan S, Matter JM, Park A-HA, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci 109:13156–13162

    CAS  PubMed  Google Scholar 

  8. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876

    PubMed  Google Scholar 

  9. National Academies of Sciences, Engineering, and Medicine (2018) Negative emissions technologies and reliable sequestration: a research agenda. The National Academies Press, Washington, DC

    Google Scholar 

  10. IEA (2010) Energy technology perspectives: scenarios & strategies to 2050. In: I.E.A. OECD/IEA, Paris

    Google Scholar 

  11. OECD (2012) OECD environmental outlook to 2050

    Google Scholar 

  12. USEPA (ed) (2016) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2014

    Google Scholar 

  13. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    CAS  PubMed  Google Scholar 

  14. Rochelle GT (2016) Conventional amine scrubbing for CO2 capture. In: Feron PHM (ed) Absorption-based post-combustion capture of carbon dioxide. Woodhead Publishing, pp 35–67

    Google Scholar 

  15. Tontiwachwuthikul P, Idem R (2013) Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents, pp 2–8

    Google Scholar 

  16. Darunte LA, Walton KS, Sholl DS, Jones CW (2016) CO2 capture via adsorption in amine-functionalized sorbents. Curr Opin Chem Eng 12:82–90

    Google Scholar 

  17. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    CAS  PubMed  Google Scholar 

  18. Chu S (2009) Carbon capture and sequestration. Science 325:1599

    CAS  PubMed  Google Scholar 

  19. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ (2007) CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86:2204–2212

    CAS  Google Scholar 

  20. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348

    CAS  Google Scholar 

  21. Ding Y, Alpay E (2000) Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem Eng Sci 55:3461–3474

    CAS  Google Scholar 

  22. Yong Z, Mata V, Rodriguez AE (2001) Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind Eng Chem Res 40:204–209

    CAS  Google Scholar 

  23. Iyer MV, Gupta H, Sakadjian BB, Fan LS (2004) Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO. Ind Eng Chem Res 43:3939–3947

    CAS  Google Scholar 

  24. Zelenak V, Badanicova M, Halamova D, Cejka J, Zukal A, Murafa N, Goerigk G (2008) Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem Eng J 144:336–342

    CAS  Google Scholar 

  25. Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113:31–40

    CAS  Google Scholar 

  26. Siriwardane RV, Shen MS, Fisher EP (2003) Adsorption of CO2, N2, and O2 on natural zeolites. Energy Fuels 17:571–576

    CAS  Google Scholar 

  27. Takamura Y, Narita S, Aoki J, Hironaka S, Uchida S (2001) Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. Sep Purif Technol 24:519–528

    CAS  Google Scholar 

  28. Hiyoshi N, Yogo K, Yashima T (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater 84:357–365

    CAS  Google Scholar 

  29. Gray ML, Soong Y, Champagne KJ, Pennline H, Baltrus JP, Stevens RW, Khatri R, Chuang SSC, Filburn T (2005) Improved immobilized carbon dioxide capture sorbents. Fuel Process Technol 86:1449–1455

    CAS  Google Scholar 

  30. Huang LL, Zhang LZ, Shao Q, Lu LH, Lu XH, Jiang SY, Shen WF (2007) Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J Phys Chem C 111:11912–11920

    CAS  Google Scholar 

  31. Razavi SS, Hashemianzadeh SM, Karimi H (2011) Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N2 mixtures. J Mol Model 17:1163–1172

    CAS  PubMed  Google Scholar 

  32. Zhang ZJ, Zhao YG, Gong QH, Li Z, Li J (2013) MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chem Commun 49:653–661

    CAS  Google Scholar 

  33. Torrisi A, Bell RG, Mellot-Draznieks C (2010) Functionalized MOFs for enhanced CO2 capture. Cryst Growth Des 10:2839–2841

    CAS  Google Scholar 

  34. Gonzalez-Zamora E, Ibrra IA (2017) CO2 capture under humid conditions in metal–organic frameworks. Mater Chem Front 1:1471–1484

    CAS  Google Scholar 

  35. Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    CAS  Google Scholar 

  36. Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi GG, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable, of capturing CO2 reversibly. J Am Chem Soc 130:2902–2903

    CAS  PubMed  Google Scholar 

  37. Rosenholm JM, Linden M (2007) Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem Mat 19:5023–5034

    CAS  Google Scholar 

  38. Rosenholm JM, Penninkangas A, Linden M (2006) Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine. Chem Commun 37:3909–3911

    Google Scholar 

  39. Tsuda T, Fujiwara T (1992) Polyethyleneimine and macrocyclic polyamine silica-gels acting as carbon-dioxide absorbents. J Chem Soc Chem Commun 22:1659–1661

    Google Scholar 

  40. Tsuda T, Fujiwara T, Taketani Y, Saegusa T (1992) Amino silica-gels acting as a carbon-dioxide absorbent. Chem Lett 21:2161–2164

    Google Scholar 

  41. Kumar P, Guliants VV (2010) Periodic mesoporous organic-inorganic hybrid materials: applications in membrane separations and adsorption. Microporous Mesoporous Mater 132:1–14

    CAS  Google Scholar 

  42. Belmabkhout Y, Sayari A (2009) Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorpt J Int Adsorpt Soc 15:318–328

    CAS  Google Scholar 

  43. Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P (2008) Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater 116:358–364

    CAS  Google Scholar 

  44. Huang HY, Yang RT, Chinn D, Munson CL (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42:2427–2433

    CAS  Google Scholar 

  45. Hiyoshi N, Yogo K, Yashima T (2004) Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chem Lett 33:510–511

    CAS  Google Scholar 

  46. Wang YM, Wu ZY, Shi LY, Zhu JH (2005) Rapid functionalization of mesoporous materials: directly dispersing metal oxides into as-prepared SBA-15 occluded with template. Adv Mater 17:323–327

    CAS  Google Scholar 

  47. Yue MB, Chun Y, Cao Y, Dong X, Zhu JH (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16:1717–1722

    CAS  Google Scholar 

  48. Qi GG, Fu LL, Choi BH, Giannelis EP (2012) Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ Sci 5:7368–7375

    CAS  Google Scholar 

  49. Liang Z, Fadhel B, Schneider CJ, Chaffee AL (2008) Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous Mesoporous Mater 111:536–543

    CAS  Google Scholar 

  50. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62:29–45

    CAS  Google Scholar 

  51. Xu XC, Song CS, Miller BG, Scaroni AW (2005) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44:8113–8119

    CAS  Google Scholar 

  52. Ma XL, Wang XX, Song CS (2009) “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. J Am Chem Soc 131:5777–5783

    CAS  PubMed  Google Scholar 

  53. Zhang ZH, Ma XL, Wang DX, Song CS, Wang YG (2012) Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas. AIChE J 58:2495–2502

    CAS  Google Scholar 

  54. Yang SB, Zhan L, Xu XY, Wang YL, Ling LC, Feng XL (2013) Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture. Adv Mater 25:2130–2134

    CAS  PubMed  Google Scholar 

  55. Tanthana J, Chuang SSC (2010) In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3:957–964

    CAS  PubMed  Google Scholar 

  56. Liu YM, Shi JJ, Chen J, Ye Q, Pan H, Shao ZH, Shi Y (2010) Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater 134:16–21

    CAS  Google Scholar 

  57. Wang DX, Sentorun-Shalaby C, Ma XL, Song CS (2011) High-capacity and low-cost carbon-based “molecular basket” sorbent for CO2 capture from flue gas. Energy Fuels 25:456–458

    CAS  Google Scholar 

  58. Chen C, Son WJ, You KS, Ahn JW, Ahn WS (2010) Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem Eng J 161:46–52

    CAS  Google Scholar 

  59. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16:1463–1469

    CAS  Google Scholar 

  60. Wang XX, Ma XL, Song CS, Locke DR, Siefert S, Winans RE, Mollmer J, Lange M, Moller A, Glaser R (2013) Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas: characterization and sorption properties. Microporous Mesoporous Mater 169:103–111

    CAS  Google Scholar 

  61. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854

    CAS  PubMed  Google Scholar 

  62. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Google Scholar 

  63. Lin YC, Kong CL, Chen L (2016) Amine-functionalized metal-organic frameworks: structure, synthesis and applications. RSC Adv 6:32598–32614

    CAS  Google Scholar 

  64. Didas SA, Choi S, Chaikittisilp W, Jones CW (2015) Amine-oxide hybrid materials for CO2 capture from ambient air. Acc Chem Res 48:2680–2687

    CAS  PubMed  Google Scholar 

  65. Dutcher B, Fan MH, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 7:2137–2148

    CAS  PubMed  Google Scholar 

  66. Chen C, Kim J, Ahn WS (2014) CO2 capture by amine-functionalized nanoporous materials: a review. Korean J Chem Eng 31:1919–1934

    CAS  Google Scholar 

  67. Gargiulo N, Pepe F, Caputo D (2014) CO2 adsorption by functionalized nanoporous materials: a review. J Nanosci Nanotechnol 14:1811–1822

    CAS  PubMed  Google Scholar 

  68. Olajire AA (2017) Synthesis of bare and functionalized porous adsorbent materials for CO2 capture. Greenh Gas 7:399–459

    CAS  Google Scholar 

  69. Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH (2008) Efficient CO2 capturer derived from As-synthesized MCM-41 modified with amine. Chem Eur J 14:3442–3451

    CAS  PubMed  Google Scholar 

  70. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167

    CAS  PubMed  Google Scholar 

  71. Heydari-Gorji A, Belmabkhout Y, Sayari A (2011) Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27:12411–12416

    CAS  PubMed  Google Scholar 

  72. Cogswell CF, Jiang H, Ramberger J, Accetta D, Willey RJ, Choi S (2015) Effect of pore structure on CO2 adsorption characteristics of aminopolymer impregnated MCM-36. Langmuir 31:4534–4541

    CAS  PubMed  Google Scholar 

  73. Gargiulo N, Peluso A, Aprea P, Pepe F, Caputo D (2014) CO2 adsorption on polyethylenimine-functionalized SBA-15 mesoporous silica: isotherms and modeling. J Chem Eng Data 59:896–902

    CAS  Google Scholar 

  74. Heydari-Gorji A, Yang Y, Sayari A (2011) Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy Fuels 25:4206–4210

    CAS  Google Scholar 

  75. Vilarrasa-García E, Cecilia J, Moya E, Cavalcante C, Azevedo D, Rodríguez-Castellón E (2015) “Low cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials 8:2495

    PubMed Central  Google Scholar 

  76. Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES (2010) CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl Surf Sci 256:5323–5328

    CAS  Google Scholar 

  77. Kishor R, Ghoshal AK (2016) High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation. Chem Eng J 300:236–244

    CAS  Google Scholar 

  78. Wang DX, Wang XX, Ma XL, Fillerup E, Song CS (2014) Three-dimensional molecular basket sorbents for CO2 capture: Effects of pore structure of supports and loading level of polyethylenimine. Catal Today 233:100–107

    CAS  Google Scholar 

  79. Wang XX, Song CS, Gaffney AM, Song RZ (2014) New molecular basket sorbents for CO2 capture based on mesoporous sponge-like TUD-1. Catal Today 238:95–102

    CAS  Google Scholar 

  80. Vilarrasa-Garcia E, Moya EMO, Cecilia JA, Cavalcante CL, Jiménez-Jiménez J, Azevedo DCS, Rodríguez-Castellón E (2015) CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater 209:172–183

    CAS  Google Scholar 

  81. Khader MM, Al-Marri MJ, Ali S, Qi G, Giannelis EP (2015) Adsorption of CO2 on polyethyleneimine 10 k-mesoporous silica sorbent: XPS and TGA studies. Am J Anal Chem 6:11

    Google Scholar 

  82. Chen C, Yang S-T, Ahn W-S, Ryoo R (2009) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 24:3627–3629

    Google Scholar 

  83. Han Y, Hwang G, Kim H, Haznedaroglu BZ, Lee B (2015) Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture. Chem Eng J 259:653–662

    CAS  Google Scholar 

  84. Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3:1949–1960

    CAS  Google Scholar 

  85. Ebner AD, Gray ML, Chisholm NG, Black QT, Mumford DD, Nicholson MA, Ritter JA (2011) Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption. Ind Eng Chem Res 50:5634–5641

    CAS  Google Scholar 

  86. Monazam ER, Shadle LJ, Miller DC, Pennline HW, Fauth DJ, Hoffman JS, Gray ML (2013) Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica. AIChE J 59:923–935

    CAS  Google Scholar 

  87. Li K, Jiang J, Tian S, Yan F, Chen X (2015) Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture. J Mater Chem A 3:2166–2175

    CAS  Google Scholar 

  88. Li K, Jiang J, Yan F, Tian S, Chen X (2014) The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl Energy 136:750–755

    CAS  Google Scholar 

  89. Minju N, Abhilash P, Nair BN, Mohamed AP, Ananthakumar S (2015) Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing. Chem Eng J 269:335–342

    CAS  Google Scholar 

  90. Zhang L, Zhan N, Jin Q, Liu H, Hu J (2016) Impregnation of polyethylenimine in mesoporous multilamellar silica vesicles for CO2 capture: a kinetic study. Ind Eng Chem Res 55:5885–5891

    CAS  Google Scholar 

  91. Chen C, Bhattacharjee S (2017) Trimodal nanoporous silica as a support for amine-based CO2 adsorbents: improvement in adsorption capacity and kinetics. Appl Surf Sci 396:1515–1519

    CAS  Google Scholar 

  92. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl Mater Interfaces 5:6937–6945

    CAS  PubMed  Google Scholar 

  93. Wang D, Ma X, Sentorun-Shalaby C, Song C (2012) Development of carbon-based “molecular basket” sorbent for CO2 capture. Ind Eng Chem Res 51:3048–3057

    CAS  Google Scholar 

  94. Wang J, Wang M, Zhao B, Qiao W, Long D, Ling L (2013) Mesoporous carbon-supported solid amine sorbents for low-temperature carbon dioxide capture. Ind Eng Chem Res 52:5437–5444

    CAS  Google Scholar 

  95. Zhang H, Goeppert A, Prakash GKS, Olah G (2015) Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO2 from various sources including dry air. RSC Adv 5:52550–52562

    CAS  Google Scholar 

  96. Yan W, Tang J, Bian Z, Hu J, Liu H (2012) Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Ind Eng Chem Res 51:3653–3662

    CAS  Google Scholar 

  97. Niu M, Yang H, Zhang X, Wang Y, Tang A (2016) Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl Mater Interfaces 8:17312–17320

    CAS  PubMed  Google Scholar 

  98. Subagyono DJN, Liang Z, Knowles GP, Chaffee AL (2011) Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chem Eng Res Des 89:1647–1657

    CAS  Google Scholar 

  99. Subagyono DJN, Marshall M, Knowles GP, Chaffee AL (2014) CO2 adsorption by amine modified siliceous mesostructured cellular foam (MCF) in humidified gas. Microporous Mesoporous Mater 186:84–93

    CAS  Google Scholar 

  100. Le Thi MU, Lee S-Y, Park S-J (2014) Preparation and characterization of PEI-loaded MCM-41 for CO2 capture. Int J Hydrogen Energy 39:12340–12346

    Google Scholar 

  101. Yan X, Zhang L, Zhang Y, Yang G, Yan Z (2011) Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Ind Eng Chem Res 50:3220–3226

    CAS  Google Scholar 

  102. Yan X, Zhang L, Zhang Y, Qiao K, Yan Z, Komarneni S (2011) Amine-modified mesocellular silica foams for CO2 capture. Chem Eng J 168:918–924

    CAS  Google Scholar 

  103. Zeng W, Bai H (2016) High-performance CO2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method. Adsorption 22:117–127

    CAS  Google Scholar 

  104. Liu X, Gao F, Xu J, Zhou L, Liu H, Hu J (2016) Zeolite@Mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water. Microporous Mesoporous Mater 222:113–119

    CAS  Google Scholar 

  105. Ma J, Liu Q, Chen D, Wen S, Wang T (2014) CO2 adsorption on amine-modified mesoporous silicas. J Porous Mater 21:859–867

    CAS  Google Scholar 

  106. Li W, Bollini P, Didas SA, Choi S, Drese JH, Jones CW (2010) Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl Mater Interfaces 2:3363–3372

    CAS  PubMed  Google Scholar 

  107. Liu Z, Pudasainee D, Liu Q, Gupta R (2015) Post-combustion CO2 capture using polyethyleneimine impregnated mesoporous cellular foams. Sep Purif Technol 156:259–268

    CAS  Google Scholar 

  108. Qi G, Wang Y, Estevez L, Duan X, Anako N, Park A-HA, Li W, Jones CW, Giannelis EP (2011) High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ Sci 4:444–452

    CAS  Google Scholar 

  109. Sandhu NK, Pudasainee D, Sarkar P, Gupta R (2016) Steam regeneration of polyethylenimine-impregnated silica sorbent for postcombustion CO2 capture: a multicyclic study. Ind Eng Chem Res 55:2210–2220

    CAS  Google Scholar 

  110. Chaikittisilp W, Kim H-J, Jones CW (2011) Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 25:5528–5537

    CAS  Google Scholar 

  111. Chaikittisilp W, Khunsupat R, Chen TT, Jones CW (2011) Poly(allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind Eng Chem Res 50:14203–14210

    CAS  Google Scholar 

  112. Zhang W, Liu H, Sun C, Drage TC, Snape CE (2014) Capturing CO2 from ambient air using a polyethyleneimine–silica adsorbent in fluidized beds. Chem Eng Sci 116:306–316

    CAS  Google Scholar 

  113. Cai H, Bao F, Gao J, Chen T, Wang S, Ma R (2015) Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes. Environ Technol 36:1273–1280

    CAS  PubMed  Google Scholar 

  114. Zhang L, Wang X, Fujii M, Yang L, Song C (2017) CO2 capture over molecular basket sorbents: effects of SiO2 supports and PEG additive. J Energy Chem 26:1030–1038

    Google Scholar 

  115. Wang XX, Song CS (2012) Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents. Catal Today 194:44–52

    CAS  Google Scholar 

  116. Alkhabbaz MA, Khunsupat R, Jones CW (2014) Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas. Fuel 121:79–85

    CAS  Google Scholar 

  117. Bali S, Chen TT, Chaikittisilp W, Jones CW (2013) Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture. Energy Fuels 27:1547–1554

    CAS  Google Scholar 

  118. Wang D, Wang X, Song C (2017) Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO2 capture from flue gas. ChemPhysChem 18:3163–3173

    CAS  PubMed  Google Scholar 

  119. Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84:2204–2210

    CAS  Google Scholar 

  120. Meth S, Goeppert A, Prakash GKS, Olah GA (2012) Silica nanoparticles as supports for regenerable CO2 sorbents. Energy Fuels 26:3082–3090

    CAS  Google Scholar 

  121. Sakwa-Novak MA, Tan S, Jones CW (2015) Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. ACS Appl Mater Interfaces 7:24748–24759

    CAS  PubMed  Google Scholar 

  122. Wang J, Long D, Zhou H, Chen Q, Liu X, Ling L (2012) Surfactant promoted solid amine sorbents for CO2 capture. Energy Environ Sci 5:5742–5749

    CAS  Google Scholar 

  123. Choi W, Min K, Kim C, Ko YS, Jeon JW, Seo H, Park Y-K, Choi M (2016) Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun 7:12640

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Min K, Choi W, Kim C, Choi M (2018) Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat Commun 9:726

    PubMed  PubMed Central  Google Scholar 

  125. Wang XX, Song CS (2014) New strategy to enhance CO2 capture over a nanoporous polyethylenimine sorbent. Energy Fuels 28:7742–7745

    CAS  Google Scholar 

  126. Pinto ML, Mafra L, Guil JM, Pires J, Rocha J (2011) Adsorption and activation of CO2 by amine-modified nanoporous materials studied by solid-state NMR and 13CO2 adsorption. Chem Mat 23:1387–1395

    CAS  Google Scholar 

  127. Mebane DS, Kress JD, Storlie CB, Fauth DJ, Gray ML, Li K (2013) Transport, zwitterions, and the role of water for CO2 adsorption in mesoporous silica-supported amine sorbents. J Phys Chem C 117:26617–26627

    CAS  Google Scholar 

  128. Didas SA, Sakwa-Novak MA, Foo GS, Sievers C, Jones CW (2014) Effect of amine surface coverage on the Co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J Phys Chem Lett 5:4194–4200

    CAS  PubMed  Google Scholar 

  129. Yu J, Chuang SSC (2016) The structure of adsorbed species on immobilized amines in CO2 capture: an in situ IR study. Energy Fuels 30:7579–7587

    CAS  Google Scholar 

  130. Shen XH, Du HB, Mullins RH, Kommalapati RR (2017) Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work. Energy Technol 5:822–833

    CAS  Google Scholar 

  131. Li KM, Jiang JG, Tian SC, Chen XJ, Yan F (2014) Influence of silica types on synthesis and performance of amine-silica hybrid materials used for CO2 capture. J Phys Chem C 118:2454–2462

    CAS  Google Scholar 

  132. Wang XX, Schwartz V, Clark JC, Ma XL, Overbury SH, Xu XC, Song CS (2009) Infrared study of CO2 sorption over “molecular basket” Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. J Phys Chem C 113:7260–7268

    CAS  Google Scholar 

  133. Wang XX, Ma XL, Schwartz V, Clark JC, Overbury SH, Zhao SQ, Xu XC, Song CS (2012) A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. Phys Chem Chem Phys 14:1485–1492

    CAS  PubMed  Google Scholar 

  134. Holewinski A, Sakwa-Novak MA, Jones CW (2015) Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc 137:11749–11759

    CAS  PubMed  Google Scholar 

  135. Holewinski A, Sakwa-Novak MA, Carrillo J-MY, Potter ME, Ellebracht N, Rother G, Sumpter BG, Jones CW (2017) Aminopolymer mobility and support interactions in silica-PEI composites for CO2 capture applications: a quasielastic neutron scattering study. J Phys Chem B 121:6721–6731

    CAS  PubMed  Google Scholar 

  136. Heydari-Gorji A, Sayari A (2011) CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling. Chem Eng J 173:72–79

    CAS  Google Scholar 

  137. Bollini P, Didas SA, Jones CW (2011) Amine-oxide hybrid materials for acid gas separations. J Mater Chem 21:15100–15120

    CAS  Google Scholar 

  138. Monazam ER, Shadle LJ, Siriwardane R (2011) Equilibrium and absorption kinetics of carbon dioxide by solid supported amine sorbent. AIChE J 57:3153–3159

    CAS  Google Scholar 

  139. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  140. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177

    Google Scholar 

  141. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    CAS  Google Scholar 

  142. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    CAS  Google Scholar 

  143. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    CAS  Google Scholar 

  144. Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312

    CAS  Google Scholar 

  145. Serna-Guerrero R, Sayari A (2010) Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves. Chem Eng J 161:182–190

    CAS  Google Scholar 

  146. Bollini P, Brunelli NA, Didas SA, Jones CW (2012) Dynamics of CO2 adsorption on amine adsorbents. 2. Insights into adsorbent design. Ind Eng Chem Res 51:15153–15162

    CAS  Google Scholar 

  147. Jung W, Park J, Lee KS (2018) Kinetic modeling of CO2 adsorption on an amine-functionalized solid sorbent. Chem Eng Sci 177:122–131

    CAS  Google Scholar 

  148. Meng Y, Jiang J, Gao Y, Yan F, Liu N, Aihemaiti A (2018) Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents. J CO2 Utiliz 27:89–98

    Google Scholar 

  149. Andreoli E, Cullum L, Barron AR (2015) Carbon dioxide absorption by polyethylenimine-functionalized nanocarbons: a kinetic study. Ind Eng Chem Res 54:878–889

    CAS  Google Scholar 

  150. Al-Marri MJ, Kuti YO, Khraisheh M, Kumar A, Khader MM (2017) Kinetics of CO2 adsorption/desorption of polyethyleneimine-mesoporous silica. Chem Eng Technol 40:1802–1809

    CAS  Google Scholar 

  151. Loganathan S, Tikmani M, Mishra A, Ghoshal AK (2016) Amine tethered pore-expanded MCM-41 for CO2 capture: experimental, isotherm and kinetic modeling studies. Chem Eng J 303:89–99

    CAS  Google Scholar 

  152. Sparks DL (1989) Kinetics of soil chemical process. Academic Press, New York

    Google Scholar 

  153. Sparks DL (1998) Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In: Sparks DL (ed) Soil physical chemistry. CRC Press, pp 135–191

    Google Scholar 

  154. Crank J (1976) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  155. Zhao ZX, Li Z, Lin YS (2009) Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Ind Eng Chem Res 48:10015–10020

    CAS  Google Scholar 

  156. Stuckert NR, Yang RT (2011) CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ Sci Technol 45:10257–10264

    CAS  PubMed  Google Scholar 

  157. Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116:504–512

    CAS  Google Scholar 

  158. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132:6312–6314

    CAS  PubMed  Google Scholar 

  159. Sayari A, Heydari-Gorji A, Yang Y (2012) CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J Am Chem Soc 134:13834–13842

    CAS  PubMed  Google Scholar 

  160. Sayari A, Belmabkhout Y, Da’na E (2012) CO2 deactivation of supported amines: does the nature of amine matter? Langmuir 28:4241–4247

    CAS  PubMed  Google Scholar 

  161. Hammache S, Hoffman JS, Gray ML, Fauth DJ, Howard BH, Pennline HW (2013) Comprehensive study of the impact of steam on polyethyleneimine on silica for CO2 capture. Energy Fuels 27:6899–6905

    CAS  Google Scholar 

  162. Bollini P, Choi S, Drese JH, Jones CW (2011) Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture. Energy Fuels 25:2416–2425

    CAS  Google Scholar 

  163. Calleja G, Sanz R, Arencibia A, Sanz-Pérez ES (2011) Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top Catal 54:135–145

    CAS  Google Scholar 

  164. Ahmadalinezhad A, Sayari A (2014) Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: insights into the nature of deactivated species. Phys Chem Chem Phys 16:1529–1535

    CAS  PubMed  Google Scholar 

  165. Chi S, Rochelle GT (2002) Oxidative degradation of monoethanolamine. Ind Eng Chem Res 41:4178–4186

    CAS  Google Scholar 

  166. Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20:1514–1520

    CAS  Google Scholar 

  167. Xu X, Song C, Miller BG, Scaroni AW (2005) Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process Technol 86:1457–1472

    CAS  Google Scholar 

  168. Fan Y, Labreche Y, Lively RP, Jones CW, Koros WJ (2014) Dynamic CO2 adsorption performance of internally cooled silica-supported poly(ethylenimine) hollow fiber sorbents. AIChE J 60:3878–3887

    CAS  Google Scholar 

  169. Rezaei F, Jones CW (2014) Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 2. Multicomponent adsorption. Ind Eng Chem Res 53:12103–12110

    CAS  Google Scholar 

  170. Sjostrom S, Krutka H, Starns T, Campbell T (2011) Pilot test results of post-combustion CO2 capture using solid sorbents. Energy Proc 4:1584–1592

    Google Scholar 

  171. Zhao W, Veneman R, Chen D, Li Z, Cai N, Brilmana DWF (2014) Post-combustion CO2 capture demonstration using supported amine sorbents: design and evaluation of 200 kWth pilot. Energy Proc 63:2374–2383

    CAS  Google Scholar 

  172. Nelson T, Kataria A, Soukri M, Farmer J, Mobley P, Tanthana J, Wang D, Wang X, Song C (2015) Bench-scale development of an advanced solid sorbent-based CO2 capture process for coal-fired power plants. DOE report. https://www.osti.gov/servlets/purl/1301858

  173. Nelson TO, Kataria A, Mobley P, Soukri M, Tanthana J (2017) RTI’s solid sorbent-based CO2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants. Energy Proc 114:2506–2524

    CAS  Google Scholar 

  174. Nelson TO, Coleman LJI, Kataria A, Lail M, Soukri M, Quang DV, Zahra MRMA (2014) Advanced solid sorbent-based CO2 capture process. Energy Proc 63:2216–2229

    CAS  Google Scholar 

  175. Nelson TO, Coleman LJI, Mobley P, Kataria A, Tanthana J, Lesemann M, Bjerge L-M (2014) Solid sorbent CO2 capture technology evaluation and demonstration at Norcem’s cement plant in Brevik, Norway. Energy Proc 63:6504–6516

    CAS  Google Scholar 

  176. Song C, Xu X, Andresen JM, Miller BG, Scaroni AW (2004) Novel nanoporous “molecular basket” adsorbent for CO2 capture. In: Park S-E, Chang J-S, Lee K-W (eds) Studies in surface science and catalysis. Elsevier, pp 411–416

    Google Scholar 

  177. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2004) Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 “molecular basket” adsorbents. Int J Environ Technol Manage 4:32–52

    CAS  Google Scholar 

  178. National Academies of Sciences, Engineering, and Medicine (2018) Direct air capture and mineral carbonation approaches for carbon dioxide removal and reliable sequestration: proceedings of a workshop–in brief. The National Academies Press, Washington, DC

    Google Scholar 

  179. Kulkarni AR, Sholl DS (2012) Analysis of equilibrium-based TSA processes for direct capture of CO2 from air. Ind Eng Chem Res 51:8631–8645

    CAS  Google Scholar 

  180. Choi S, Drese JH, Chance RR, Eisenberger PM, Jones CW (2013) Application of amine-tethered solid sorbents to CO2 fixation from air. U.S. Patent 8491705 B2

    Google Scholar 

  181. Eisenberger PM, Chichilnisky G (2014) System and method for removing carbon dioxide from an atmosphere and global thermostat using the same. U.S. Patent 8894747 B2

    Google Scholar 

  182. Eisenberger PM (2012) Carbon dioxide capture/regeneration structures and techniques. U.S. Patent 8163066 B2

    Google Scholar 

  183. Eisenberger PM (2013) System and method for carbon dioxide capture and sequestration. U.S. Patent 8500855 B2

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the US Department of Energy, National Energy Technology Laboratory and the Pennsylvania State University on various portions of the CO2 research. We also acknowledge the RTI International for the joint DOE project on pilot plant demonstration of the CO2 MBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunshan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Song, C. (2019). Capture of CO2 from Concentrated Sources and the Atmosphere. In: Aresta, M., Karimi, I., Kawi, S. (eds) An Economy Based on Carbon Dioxide and Water. Springer, Cham. https://doi.org/10.1007/978-3-030-15868-2_2

Download citation

Publish with us

Policies and ethics