Skip to main content

Enhanced Biological Fixation of CO2 Using Microorganisms

  • Chapter
  • First Online:
An Economy Based on Carbon Dioxide and Water

Abstract

Microbial fixation of carbon dioxide (CO2), represented by photosynthesis, is an important link of the global carbon cycle. It provides the majority of organic chemicals and energy for human consumption. With the great development and application of fossil resources in recent years, more and more CO2 has been released into the atmosphere, and the greenhouse effect is looming. Therefore, more efficient carbon fixation processes are urgently needed. In view of this, the microbial conversion of exhaust CO2 into valuable fuels and chemicals based on an efficient CO2 fixation pathway is very promising. With the rapid development of systems biology, more and more insights into the natural carbon fixation processes have become available. Many attempts have been made to enhance the biological fixation of CO2, by engineering the key carbon fixation enzymes, introducing natural carbon fixation pathways into heterotrophs, redesigning novel carbon fixation pathways, and even developing novel energy supply patterns. In this review, we summarize the great achievements made in recent years, and discuss the main challenges as well as future perspectives on the biological fixation of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78:7098–7106

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Angermayr SA, Rovira AG, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33:352–361

    CAS  PubMed  Google Scholar 

  3. Antonovsky N, Gleizer S, Noor E et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:115–125

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    CAS  PubMed  Google Scholar 

  5. Bang J, Lee SY (2018) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci USA 115:E9271–E9279

    CAS  PubMed  Google Scholar 

  6. Bar-Even A, Noor E, Lewis NE et al (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA 107:8889–8894

    CAS  PubMed  Google Scholar 

  7. Beese-Vasbender PF, Grote JP, Garrelfs J et al (2015) Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry 102:50–55

    CAS  PubMed  Google Scholar 

  8. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109:100–109

    CAS  PubMed  Google Scholar 

  9. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Berg IA, Kockelkorn D, Buckel W et al (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786

    CAS  PubMed  Google Scholar 

  11. Blankenship Robert E et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    CAS  PubMed  Google Scholar 

  12. Cai Z, Liu G, Zhang J, et al (2014) Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein cell:1–11

    Google Scholar 

  13. Calvin M (1949) The path of carbon in photosynthesis. J Chem Educ 26:639

    CAS  Google Scholar 

  14. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480

    CAS  PubMed  Google Scholar 

  15. Calvin M, Massini P (1952) The path of carbon in photosynthesis. Cell Mol Life Sci 8:445–457

    CAS  Google Scholar 

  16. Claassens NJ, Volpers M, dos Santos V et al (2013) Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms. Trends Biotechnol 31:633–642

    CAS  PubMed  Google Scholar 

  17. Darensbourg MY, Lyon EJ, Smee JJ (2000) The bio-organometallic chemistry of active site iron in hydrogenases. Coord Chem Rev 206:533–561

    Google Scholar 

  18. Dexter J, Fu PC (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    CAS  Google Scholar 

  19. Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. Acetogene:3–60

    Google Scholar 

  20. Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    CAS  PubMed  Google Scholar 

  21. Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395

    Google Scholar 

  22. Fast AG, Papoutsakis E T (2018) Functional expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in clostridium acetobutylicum as demonstrated by a novel in vivo CO exchange activity en route to heterologous installation of a functional Wood-Ljungdahl pathway. Appl Environ. Microbiol 84

    Google Scholar 

  23. Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240

    CAS  PubMed  Google Scholar 

  24. Gao ZX, Zhao H, Li ZM et al (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    CAS  Google Scholar 

  25. Genkov T, Meyer M, Griffiths H et al (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas. J Biol Chem 285:19833–19841

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong FY, Cai Z, Li Y (2016) Synthetic biology for CO2 fixation. Sci China-Life Sci 59:1106–1114

    CAS  PubMed  Google Scholar 

  27. Gong FY, Li Y (2016) Fixing carbon, unnaturally. Science 354:830–831

    CAS  PubMed  Google Scholar 

  28. Gong F, Liu G, Zhai X et al (2015) Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol Biofuels 8:1–10

    Google Scholar 

  29. Gong F, Zhu H, Zhang Y et al (2018) Biological carbon fixation: from natural to synthetic. J CO2 Util 28:221–227

    Google Scholar 

  30. Greening C, Cook GM (2014) Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 18:30–38

    CAS  PubMed  Google Scholar 

  31. Guadalupe-Medina V, Wisselink HW, Luttik MAH et al (2013) Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels 6:1–12

    Google Scholar 

  32. Herter S, Farfsing J, Gad’On N et al (2001) Autotrophic CO2 fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J Bacteriol 183:4305–4316

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huber H, Gallenberger M, Jahn U et al (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci USA 105:7851–7856

    CAS  PubMed  Google Scholar 

  34. Ishikawa C, Hatanaka T, Misoo S et al (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang RJ, Zhou WQ, Cai ZL et al (2000) Photoautotrophic cultivation of Synechococcus sp. PCC7002 in photobioreactor. Sheng Wu Gong Cheng Xue Bao 16:618–622

    Google Scholar 

  36. Keller MW, Schut GJ, Lipscomb GL et al (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA 110:5840–5845

    CAS  PubMed  Google Scholar 

  37. Kim BW, Chang HN, Kim IK et al (1992) Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor. Biotech Bioeng 40:583–592

    CAS  Google Scholar 

  38. Kirst HFC, Melis A (2014) Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim Biophys Acta-Bioenerg 10:1653–1664

    Google Scholar 

  39. Kletzin A, Urich T, Muller F et al (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomem 36:77–91

    CAS  Google Scholar 

  40. Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    CAS  Google Scholar 

  41. Kracke F, Vassilev I, Kromer JO (2015) Microbial electron transport and energy conservation—The foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    PubMed  PubMed Central  Google Scholar 

  42. Lamont CM, Sargent F (2017) Design and characterisation of synthetic operons for biohydrogen technology. Arch Microbiol 199:495–503

    CAS  PubMed  Google Scholar 

  43. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    CAS  PubMed  Google Scholar 

  44. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109:6018–6023

    CAS  PubMed  Google Scholar 

  45. Larkum AWD (2010) Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotech 21:271–276

    CAS  PubMed  Google Scholar 

  46. Laurinavichene TV, Tsygankov AA (2001) H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett 202:121–124

    CAS  PubMed  Google Scholar 

  47. Li H, Opgenorth PH, Wernick DG et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

    CAS  PubMed  Google Scholar 

  48. Li YJ, Wang MM, Chen YW et al (2017) Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Sci Rep 7:1–9

    Google Scholar 

  49. Lou WJ, Tan XM, Song K et al (2018) A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942. Appl Environ Microbiol 84

    Google Scholar 

  50. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390

    CAS  PubMed  Google Scholar 

  51. Martinez A, Bradley AS, Waldbauer JR et al (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci USA 104:5590–5595

    CAS  PubMed  Google Scholar 

  52. Mattozzi M, Ziesack M, Voges MJ et al (2013) Expression of the sub-pathways of the chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab Eng

    Google Scholar 

  53. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol. Eco. 65:1–14

    CAS  Google Scholar 

  54. Nakagawa S, Takaki Y, Shimamura S et al (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104:12146–12150

    CAS  PubMed  Google Scholar 

  55. Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103–00110

    Google Scholar 

  57. Niederholtmeyer H, Wolfstadter BT, Savage DF et al (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nybo SE, Khan NE, Woolston BM et al (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120

    CAS  PubMed  Google Scholar 

  59. Nürnberg DJ, Morton J, Stefano S, et al (2018) Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 360:1210–1213

    Google Scholar 

  60. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    CAS  PubMed  Google Scholar 

  61. Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 6:3–11

    CAS  PubMed  Google Scholar 

  62. Rosenthal DM, Locke AM, Khozaei M et al (2011) Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakimoto KK, Wong AB, Yang PD (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74–77

    CAS  PubMed  Google Scholar 

  64. Sargent F (2016) The model NiFe-hydrogenases of Escherichia coli. Adv Microb Physiol 68:433–507

    CAS  PubMed  Google Scholar 

  65. Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33:8–14

    CAS  PubMed  Google Scholar 

  66. Schiel-Bengelsdorf B, Durre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    CAS  PubMed  Google Scholar 

  67. Schulman M, Wood HG, Ljungdahl LG, et al (1972) Total synthesis of acetate from CO2 V. determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J Bacteriol 109:633–644

    Google Scholar 

  68. Schwander T, von Borzyskowski LS, Burgener S et al (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–904

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi L, Dong HL, Reguera G et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662

    CAS  PubMed  Google Scholar 

  70. Song K, Tan X, Liang Y et al (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100:7865–7875

    CAS  PubMed  Google Scholar 

  71. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO, fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Euro J Biochem 215:633–643

    CAS  Google Scholar 

  72. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus-aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643

    CAS  PubMed  Google Scholar 

  73. Varman AM, Yu Y, You L et al (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Fact 12

    Google Scholar 

  74. Wang B, Wang J, Zhang W et al (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3

    Google Scholar 

  75. Waterbury JB, Watson SW, Guillard RRL et al (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294

    Google Scholar 

  76. Work VH, D’Adamo S, Radakovits R et al (2012) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr Opin Biotechnol 23:290–297

    CAS  PubMed  Google Scholar 

  77. Yishai O, Bouzon M, Doring V et al (2018) In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth, Biol

    Google Scholar 

  78. Yishai O, Goldbach L, Tenenboim H et al (2017) Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth Biol 6:1722–1731

    CAS  PubMed  Google Scholar 

  79. Yu H, Li X, Duchoud F et al (2008) Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. Nat Commun 2018:9

    Google Scholar 

  80. Zander U, Faust A, Klink BU et al (2011) Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD. J Bio Chem 286:8349–8360

    CAS  Google Scholar 

  81. Zhou J, Zhang F, Meng H et al (2016) Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 38:217–227

    CAS  PubMed  Google Scholar 

  82. Zhou J, Zhang HF, Zhang YP et al (2012) Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 14:394–400

    CAS  PubMed  Google Scholar 

  83. Zhuang ZY, Li SY (2013) Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol 150:79–88

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3), and the National Natural Science Foundation of China (31470231, 31670048, and 31700047). Yin Li was supported by the Hundreds of Talents Program of the Chinese Academy of Sciences, and Yanping Zhang was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2014076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gong, F. et al. (2019). Enhanced Biological Fixation of CO2 Using Microorganisms. In: Aresta, M., Karimi, I., Kawi, S. (eds) An Economy Based on Carbon Dioxide and Water. Springer, Cham. https://doi.org/10.1007/978-3-030-15868-2_10

Download citation

Publish with us

Policies and ethics