Particle Image Velocimetry Technique Applied to Flow Evaluation Through a Shock Absorber Intake Valve

  • Piotr Czop
  • Mariusz HetmańczykEmail author
  • Grzegorz Wszołek
  • Jakub Słoniewski
  • Damian Gąsiorek
  • Zbigniew Buliński
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)


This paper provides a feasibility study regarding experimental PIV (Particle Image Velocimetry) measurements in order to determine a velocity map of the flow developed across the hydraulic shock absorber intake valve. The velocity map is required to validate and calibrate a CFD/FSI model, which is intended to assess the risk of occurrence of aeration/cavitation phenomena. The model allows to reduce the risk at the shock absorber design stage by means of virtual prototyping. The paper presents the developed hydraulic experimental setup and image processing algorithms in order to obtain a velocity map. The initial test results are briefly reported.


PIV CFD FSI Shock absorber Fluid flow model Image processing Intake valve 


  1. 1.
    Duym, S.W., Baron, G.V., Stiens, R., Reybrouck, K.G.: Physical modeling of the hysteretic behaviour of automotive shock absorbers. SAE Technical Paper 970101, pp. 125–137 (1997)Google Scholar
  2. 2.
    Dixon, J.C.: The Shock Absorber Handbook. Society of Automotive Engineers (SAE), Warrendale (1999)CrossRefGoogle Scholar
  3. 3.
    Ceccio, S.L., Brennen, C.E.: Observations of the dynamics and acoustics of travelling bubble cavitation. J. Fluid Mech. 233, 633–660 (1991)CrossRefGoogle Scholar
  4. 4.
    Czop, P., Sławik, D.: A high-frequency first-principle model of a shock absorber and servo-hydraulic tester. Mech. Syst. Signal Process. 25, 1937–1955 (2011)CrossRefGoogle Scholar
  5. 5.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  6. 6.
    Czop, P., Sławik, D., Włodarczyk, T., Wojtyczka, M., Wszołek, G.: Six Sigma methodology applied to minimizing damping lag in hydraulic shock absorbers. J. Achieve. Mater. Manuf. Eng. 49, 243–250 (2011)Google Scholar
  7. 7.
    Czop, P., Śliwa, P., Gniłka, J., Gąsiorek, D., Wszołek, G.: A computational fluid flow analysis of a disc valve system. J. KONES 18(1), 112–117 (2011)Google Scholar
  8. 8.
    Świder, J., Wszołek, G., Czop, P., Jakubowski, D., Gąsiorek, D., Sławik, D., Skrobol, A., Włodarczyk, T., Buliński, Z., Gniłka, J.: Model-based Approach Applied in Optimization of Hydraulic Valve Systems. Jacek Skalmierski Publishing House, Gliwice (2013)Google Scholar
  9. 9.
    Cavazzini, G.: The Particle Image Velocimetry – Characteristics, Limits and Possible Applications. InTech, France (2012)CrossRefGoogle Scholar
  10. 10.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  11. 11.
    Schwer, L.E.: An overview of the ASME V&V-10. Guide for verification and validation in computational solid mechanics. In: 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20), pp. 1–10. The American Society of Mechanical Engineers, Finland (2010)Google Scholar
  12. 12.
    Guzzomi, F.: Investigation of damper valve fluid-structure interaction through the application of experimental visualisation techniques. Ph.D. thesis, The University of Western, Australia (2007)Google Scholar
  13. 13.
    Guzzomi, F., O’Neill, P., Tavner, A: Investigation of damper valve dynamics using parametric numerical methods. In: 16th Australasian Fluid Mechanics Conference (AFMC), pp. 1123–1130. School of Engineering, The University of Queensland, Queensland (2007)Google Scholar
  14. 14.
    Czop, P., Wszołek, G., Hetmańczyk, M., Dawid J.: Method for the determination of working parameters of the passive valves, in particular the disk valves of hydraulic attenuators by PIV method (granted patent). Silesian Technical University, PL222810 (B1) (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr Czop
    • 1
  • Mariusz Hetmańczyk
    • 2
    Email author
  • Grzegorz Wszołek
    • 2
  • Jakub Słoniewski
    • 1
  • Damian Gąsiorek
    • 2
  • Zbigniew Buliński
    • 2
  1. 1.AGH University of Science and TechnologyCracowPoland
  2. 2.The Silesian University of TechnologyGliwicePoland

Personalised recommendations