Interactive Controller Aiding the Process of Upper Limb Rehabilitation

  • Piotr WodarskiEmail author
  • Marek Gzik
  • Miłosz Chrzan
  • Andrzej Bieniek
  • Barbara Łopacka
  • Robert Michnik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)


Interactive devices supporting the rehabilitation of upper limbs are becoming more and more popular among physicians and physiotherapists. It has been observed that the motivation increases in patients while doing exercises aided by computer systems. A controller developed in this research supports the process of diagnosis and therapy. It has been made in the form of a glove worn on the upper limb. The device enables the patient to control an application in the virtual world of computer graphics by detecting the movements of the limb and flexion of two selected fingers. This work encompasses the concept of the device, documentation of the prototype and verification of its functioning. The verification was conducted in two stages: the first one focused on the verification of the operation of tensometric flex sensors, and the second on the verification of indications of an orientation sensor. The verification tests determined the hysteresis of tensometric sensors and a mean-square error as well as a correlation coefficient between different system orientation values measured by means of various measuring systems. The verification enabled the determination of uncertainty of parameters measured as well as functionality of the device.


Virtual Reality Technology Supporting rehabilitation processes Interactive controller 


  1. 1.
    Guberek, R., Maxime, T.R., Heidi, S., Levin, F.M.: Motor learning in children with hemiplegic cerebral palsy and the role of sensation in short-term motor training of goal-directed reaching. Dev. Med. Child Neurol. 55(12), 1121–1128 (2013)CrossRefGoogle Scholar
  2. 2.
    Gzik, M., Wodarski, P., Jurkojć, J., Michnik, R., Bieniek, A.: Interactive system of engineering support of upper limb diagnosis. In: Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol. 526, pp. 115–123. Springer (2016). ISBN 978-3-319-47153-2, ISSN 2194-5357Google Scholar
  3. 3.
    Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbelien, E., Gestel, L., Feys, H.: Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Res. Dev. Disabil. 32, 2283–2294 (2011)CrossRefGoogle Scholar
  4. 4.
    Koziol, L.F., Budding, D.E., Chidekel, D.: Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. Cerebellum 10, 770–792 (2011)CrossRefGoogle Scholar
  5. 5.
    Medynski, C., Rattray, B.: Bebionic prosthetic design. In: Myoelectric Symposium (2011)Google Scholar
  6. 6.
    Michnik, R., Jurkojć, J., Wodarski, P., Gzik, M., Bieniek, A.: The influence of the scenery and the amplitude of visual disturbances in the virtual reality on the maintaining the balance. Arch. Budo 10(1), 133–140 (2014). ISSN 1643-8698. aaICID: 1105314Google Scholar
  7. 7.
    Opara, J., Rycerski, W., Szczygieł, J., Mazurek, J., Wardejn, R., Kucińska, A.: Innowacyjne zastosowanie wirtualnej rzeczywistości w unowocześnianiu terapii lustrzanej w niedowładzie kończyny górnej. Analiza przypadku (2016)Google Scholar
  8. 8.
    Pasquina, P.F., Evangelista, M., Carvalho, A.J., Lockhart, J., Griffin, S., Nanos, G., McKay, P., Hansen, M., Ipsen, D., Vandersea, J., Butkus, J., Miller, M., Murphy, I., Hankin, D.: First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244, 85–93 (2015)CrossRefGoogle Scholar
  9. 9.
    Riener, R., Harders, M.: Virtual Reality in Medicine. Springer, London (2012). ISBN 978-1-4471-4010-8CrossRefGoogle Scholar
  10. 10.
    Schilbach, L., Wohlschlaeger, A.M., Kraemer, N.C., Newen, A., Shah, N.J., Fink, G.R., Vogeley, K.: Being with virtual others: neural correlates of social interaction. Neuropsychologia 44, 718–730 (2006)CrossRefGoogle Scholar
  11. 11.
    Yalon-Chamovitz, S., Weiss, P.L.: Virtual reality as a leisure activity for young adults with physical and intellectual disabilities. Res. Dev. Disabil. 29, 273–287 (2008)CrossRefGoogle Scholar
  12. 12.
    Zuniga, J., Katsavelis, D., Peck, J., Stollberg, J., Petrykowski, M., Carson, A., Fernandez, C.: Cyborg beast: a low-cost 3D-printed prothetic hand for children with upper-limp differences. BMC Res. Notes (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr Wodarski
    • 1
    Email author
  • Marek Gzik
    • 1
  • Miłosz Chrzan
    • 1
  • Andrzej Bieniek
    • 1
  • Barbara Łopacka
    • 1
  • Robert Michnik
    • 1
  1. 1.Department of Biomechatronics, Faculty of Biomedical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations