Mathematical Modelling and Selecting the Parameters of Magnetic Circuit of Disk Torque Converter

  • Arkadiusz Tomas
  • Tomasz TrawińskiEmail author
  • Arkadiusz Mężyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)


The concept and mathematical model of torque converter using the magnetic field of permanent magnets and electromagnetic induction for torque transmission is presented. Different examples of known types of magnetic gears are discussed and patent survey is presented. The torque converter has changeable dynamic and kinetic gear ratio. Magnetic flux density in air gap of new torque converter for five different arrangement of permanent magnets is analyzed. Mathematical field-circuit model of a torque converter is presented. Resultant flux density distribution is regarded as input quantity for field-circuit model of this converter. Results of simulation in a form of the converter operational characteristics are given.


Energy conversion Gears Circuit analysis Finite element methods 


  1. 1.
    Armstrong, C.G.: Power transmitting device. US Patent No. 687 292 (1901)Google Scholar
  2. 2.
    Faus, H.T.: Magnet gearing. U.S. Patent 2 243 555 (1941)Google Scholar
  3. 3.
    Trout, S.R.: Permanent magnets based on the lanthanides Raw Materials, Processing and Properties. Accessed 2016
  4. 4.
    Li, X., Chau, K.T., Cheng, M., Hua, W.: Comparison of magnetic-geared permanent- magnet machines. Prog. Electromagn. Res. 133, 177–198 (2013)CrossRefGoogle Scholar
  5. 5.
    Jørgensen, F.T., Andersen, T.O., Rasmussen, P.O.: The cycloid permanent magnetic gear. IEEE Trans. Ind. Appl. 44(6), 1659–1665 (2008)CrossRefGoogle Scholar
  6. 6.
    Li, K., Bird, J., Kadel, J., Williams, W.: A flux focusing cycloidal magnetic gearbox. In: Magnetics Conference (INTERMAG), IEEE Transactions on Magnetics (2015)Google Scholar
  7. 7.
    Mężyk, A., Tomas, A.: Przekładnie magnetyczne – nowa jakość w transmisji momentu obrotowego, Przegląd Mechaniczny, vol. 10, pp. 40–44 (2013). (in polish)Google Scholar
  8. 8.
    Atallah, K., Howe, D.: A novel high-performance magnetic gear. IEEE Trans. Magn. 37(4), 2844–2846 (2001)CrossRefGoogle Scholar
  9. 9.
    Atallah, K., Calverley, S.D., Howe, D.: Design, analysis and realization of a high-performance magnetic gear. In: IEE Proceedings-Electric Power Application, vol. 151, no. 2 (2004)Google Scholar
  10. 10.
    Jian, L., Chau, K.T.: Design and analysis of a magnetic-geared electronic-continuously variable transmission system using fine element method. Prog. Electromagn. Res. 107, 47–61 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, M., Chau, K., Liu, C.: Design and analysis of an advanced magnetic variable gear for hybrid electric vehicles. In: Magnetics Conference (INTERMAG) (2015)Google Scholar
  12. 12.
    Shah, L., Cruden, A., Williams, B.W.: A variable speed magnetic gear box using contra - rotating input shafts. IEEE Trans. Magn. 47(2), 431–438 (2011)CrossRefGoogle Scholar
  13. 13.
    Trawiński, T., Kluszczyński, K., Kołton, W.: Lumped parameter model of double armature VCM motor for head positioning system of mass storage devices. Przegląd Elektrotechniczny 87(12b/2011), 184–187 (2011). (in polish)Google Scholar
  14. 14.
    Trawiński, T., Pilch, Z., Burlikowski, W., Kluszczyński, K.: Operation fundamentals of the electromagnetic torque generator part I - properties of the pulsating torque. In: Technical and Economic Aspect of Modern Technology Transfer in Context of Integration with European Union, vol. 2, pp. 255–260 (2004)Google Scholar
  15. 15.
    Pilch, Z., Burlikowski, W., Trawiński, T., Kluszczyński, K.: Operation fundamentals of the electromagnetic torque generator part II - design process. In: Technical and Economic Aspect of Modern Technology Transfer in Context of Integration with European Union, vol. 2, pp. 261–265 (2004)Google Scholar
  16. 16.
    Trawiński, T., Kluszczyński, K.: Symbolic calculations - tool for fast analyzing poliharmonic models of squirrel-cage motors. Pr. Inst. Elektrot. 216, 117–129 (2003)Google Scholar
  17. 17.
    Zhang, X., Liu, X., Chen, Z.: A novel coaxial magnetic gear and its integration with permanent-magnet brushless motor. Trans. Magn. (2016).
  18. 18.
    Montague, R., Bingham, C., Atallah, K.: Servo control of magnetic gears. IEEE/ASME Trans. Mechatron. 17(2), 269–276 (2012)CrossRefGoogle Scholar
  19. 19.
    Fuxing, Q., Hai, H.: Winding type permanent magnet coupling transmission device. Patent CN104767357 (2015)Google Scholar
  20. 20.
    Fuxing, Q., Hongtao, L.: Magnetic coupling transmission device running at constant power and adjustable speed. Patent CN105006951 (2015)Google Scholar
  21. 21.
    Trofimov, L.A.: Electric-torque converter. U.S. Patent no. 2654849 (1953)Google Scholar
  22. 22.
    Trofimov, L.A.: Electric-torque converter. U.S. Patent no. 2790917 (1957)Google Scholar
  23. 23.
    Waltsheff, D.D.: Electromagnetic transmission torque converter. U.S. Patent no. 2864016 (1958)Google Scholar
  24. 24.
    Mężyk, A., Tomas, A., Fice, M.: Induction torque converter. Patent PL402445 (2013)Google Scholar
  25. 25.
    Tomas, A., Trawiński, T.: Modelowanie charakterystyk pracy indukcyjnego przemiennika momentu. Masz. Gór. R. 34(2), 64–82 (2016). (in polish)Google Scholar
  26. 26.
    Tomas, A., Trawiński, T.: Możliwości zastosowania indukcyjnego przemiennika momentu w napędach maszyn przeróbczych. Innowacyjne i przyjazne dla środowiska techniki i technologie przeróbki surowców mineralnych. In: Bezpieczeństwo - jakość - efektywność. Komeko 2016. Monografia. Praca zbiorowa. Red. Adam Klich, Antoni Kozieł. Instytut Techniki Górniczej KOMAG, Gliwice: Instytut Techniki Górniczej KOMAG, 2016, dysk optyczny (CD-ROM), pp. 206–226 (2016). (in polish)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arkadiusz Tomas
    • 1
  • Tomasz Trawiński
    • 2
    Email author
  • Arkadiusz Mężyk
    • 3
  1. 1.KOMAG Institute of Mining TechnologyGliwicePoland
  2. 2.Department of MechatronicsSilesian University of TechnologyGliwicePoland
  3. 3.Institute of Theoretical and Applied MechanicsSilesian University of TechnologyGliwicePoland

Personalised recommendations