Skip to main content

A Hybrid Firefly - VNS Algorithm for the Permutation Flowshop Scheduling Problem

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11328)

Abstract

In this paper a Permutation Flowshop Scheduling Problem is solved using a hybridization of the Firefly algorithm with Variable Neighborhood Search algorithm. The Permutation Flowshop Scheduling Problem (PFSP) is one of the most computationally complex problems. It belongs to the class of combinatorial optimization problems characterized as NP-hard. In order to find high quality solutions in reasonable computational time, heuristic and metaheuristic algorithms have been used for solving the problem. The proposed method, Hybrid Firefly Variable Neighborhood Search algorithm, uses in the local search phase of the algorithm a number of local search algorithms, 1-0 relocate, 1-1 exchange and 2-opt. In order to test the effectiveness and efficiency of the proposed method we used a set of benchmark instances of different sizes from the literature.

Keywords

  • Permutation Flowshop Scheduling Problem
  • Firefly algorithm
  • Variable Neighborhood Search

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-15843-9_21
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-15843-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Chen, S.-H., Chang, P.-C., Cheng, T.C.E., Zhang, Q.: A self-guided genetic algorithm for permutation flowshop scheduling problems. Comput. Oper. Res. 39, 1450–1457 (2012)

    MathSciNet  CrossRef  Google Scholar 

  2. Gajpal, Y., Rajendran, C.: An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops. Int. J. Prod. Econ. 101(2), 259–272 (2006)

    CrossRef  Google Scholar 

  3. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976)

    MathSciNet  CrossRef  Google Scholar 

  4. Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion. Comput. Oper. Res. 31, 1891–1909 (2004)

    MathSciNet  CrossRef  Google Scholar 

  5. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  CrossRef  Google Scholar 

  6. Johnson, S.: Optimal two-and-three stage production schedules with setup times included. Naval Res. Logistics Q. 1, 61–68 (1954)

    CrossRef  Google Scholar 

  7. Liao, C.-J., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. Comput. Oper. Res. 34, 3099–3111 (2007)

    CrossRef  Google Scholar 

  8. Liu, B., Wang, L., Jin, Y.-H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 37(1), 18–27 (2007)

    CrossRef  Google Scholar 

  9. Liu, Y.-F., Liu, S.-Y.: A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem. Appl. Soft Comput. 13, 1459–1463 (2013)

    CrossRef  Google Scholar 

  10. Ma, Y., Zhao, Y., Wu, L., He, Y., Yang, X.-S.: Navigability analysis of magnetic map with projecting pursuit-based selection method by using firefly algorithm. Neurocomputing 159, 288–297 (2015)

    CrossRef  Google Scholar 

  11. Marinakis, Y., Marinaki, M.: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Comput. 17(7), 1159–1173 (2013)

    CrossRef  Google Scholar 

  12. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop problem. Eur. J. Oper. Res. 91, 160–175 (1996)

    CrossRef  Google Scholar 

  13. Osaba, E., Yang, X.S., Diaz, F., Onieva, E., Masegosa, A.D., Perallos, A.: A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput. 21(18), 5295–5308 (2017)

    CrossRef  Google Scholar 

  14. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Comput. Ind. Eng. 55, 795–816 (2008)

    CrossRef  Google Scholar 

  15. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)

    CrossRef  Google Scholar 

  16. Rajendran, C., Ziegler, H.: Two ant-colony algorithms for minimizing total flowtime in permutation flowshops. Comput. Ind. Eng. 48(4), 789–797 (2005)

    CrossRef  Google Scholar 

  17. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165, 479–494 (2005)

    CrossRef  Google Scholar 

  18. Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34, 461–476 (2006)

    CrossRef  Google Scholar 

  19. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177, 2033–2049 (2007)

    CrossRef  Google Scholar 

  20. Srikakulapu, R., Vinatha, U.: Combined approach of firefly algorithm with travelling salesmen problem for optimal design of offshore wind farm. In: IEEE Power and Energy Society General Meeting 2017, pp. 1–5 (2017)

    Google Scholar 

  21. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)

    CrossRef  Google Scholar 

  22. Tseng, L.-Y., Lin, Y.-T.: A hybrid genetic local search algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 198, 84–92 (2009)

    CrossRef  Google Scholar 

  23. Tseng, L.-Y., Lin, Y.-T.: A genetic local search algorithm for minimizing total flowtime in the permutation flowshop scheduling problem. Int. J. Prod. Econ. 127, 121–128 (2010)

    CrossRef  Google Scholar 

  24. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, London (2010)

    Google Scholar 

  25. Zhang, C., Sun, J., Zhu, X., Yang, Q.: An improved particle swarm optimization algorithm for flowshop scheduling problem. Inf. Process. Lett. 108, 204–209 (2008)

    MathSciNet  CrossRef  Google Scholar 

  26. Zhang, C., Ning, J., Ouyang, D.: A hybrid alternate two phases particle swarm optimization algorithm for flow shop scheduling problem. Comput. Ind. Eng. 58, 1–11 (2010)

    CrossRef  Google Scholar 

  27. Zobolas, G.I., Tarantilis, C.D., Ioannou, G.: Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm. Comput. Oper. Res. 36, 1249–1267 (2009)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Taxidou, A., Karafyllidis, I., Marinaki, M., Marinakis, Y., Migdalas, A. (2019). A Hybrid Firefly - VNS Algorithm for the Permutation Flowshop Scheduling Problem. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds) Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science(), vol 11328. Springer, Cham. https://doi.org/10.1007/978-3-030-15843-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15843-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15842-2

  • Online ISBN: 978-3-030-15843-9

  • eBook Packages: Computer ScienceComputer Science (R0)