Skip to main content

Vision-Based Marker-Less Spatiotemporal Gait Analysis by Using a Mobile Platform: Preliminary Validation

  • Conference paper
  • First Online:
  • 404 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 982))

Abstract

Gait analysis is one of the most useful tools for assessing age-related conditions. This study describes the preliminary validation of a novel vision-based method for unobtrusive, ambulatory monitoring of spatiotemporal gait parameters. The method uses a mobile platform that is equipped with a Microsoft Kinect. A proprietary, generative tracker is used for measuring the 3D segmental movement of the subject. A novel method was developed for extracting gait parameters from the raw joint measurements by using the relative distance between the two ankle joints. The results are assessed in terms of mean absolute error and mean absolute percentage error with respect to a motion capture system. The mean absolute error ± precision was 5.5 ± 3.5 cm for stride length, 1.7 ± 1.3 cm for step width, 0.93 ± 0.44 steps/min for cadence, and 2.5 ± 2.0% for single limb support. While these results are promising, additional experiments are required to assess the repeatability of this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. United Nations, World population ageing 2015 (ST/ESA/SER.A/390). Technical Report 1, Department of Economic and Social Affairs, Population Division (2015)

    Google Scholar 

  2. Nimmesgern, E., Benediktsson, I., Norstedt, I.: Clin. Transl. Sci. 10(2), 61 (2017)

    Google Scholar 

  3. G.S. of the Council to Delegations, Council Conclusions (2015)

    Google Scholar 

  4. European Commission, Research and Innovation. Conferences and Events: Personalised Medicine Conference 2016 (2016)

    Google Scholar 

  5. Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: J. Am. Med. Dir. Assoc. 13(2), 114 (2012)

    Google Scholar 

  6. Wada, K., Shibata, T., Saito, T., Tanie, K.: Proc. IEEE 92(11), 1780 (2004)

    Google Scholar 

  7. Gaugler, J.E., Yu, F., Krichbaum, K., Wyman, J.F.: Med. Care 47(2), 191 (2009)

    Article  Google Scholar 

  8. Valkanova, V., Ebmeier, K.P.: Gait Posture 53, 215 (2017)

    Article  Google Scholar 

  9. Salarian, A., et al.: IEEE Trans Biomed. Eng. 51(8), 1434 (2004)

    Google Scholar 

  10. Viswanathan, A., Sudarsky, L.: Handb. Clin. Neurol. 103, 623 (2012)

    Google Scholar 

  11. Moore, S.T., Dilda, V., Hakim, B., Macdougall, H.G.: Biomed. Eng. Online 10, 82 (2011)

    Google Scholar 

  12. Fahn, S.: Recent Developments in Parkinson’s Disease, vol. 2, p. 153 (1987)

    Google Scholar 

  13. Ijmker, T., Lamoth, C.J.C.: Gait Posture 35(1), 126 (2012)

    Google Scholar 

  14. Del Din, S., Godfrey, A., Galna, B., Lord, S., Rochester, L.: J. Neuroeng. Rehabil. 13(1), 46 (2016)

    Google Scholar 

  15. DeLisa, J.A.: Gait Analysis in the Science of Rehabilitation. DIANE Publishing, Darby (1998)

    Google Scholar 

  16. Mündermann, L., Corazza, S., Andriacchi, T.P.: J. Neuroeng. Rehabil. 3, 6 (2006)

    Google Scholar 

  17. Ceseracciu, E., Sawacha, Z., Cobelli, C.: PLoS One 9(3), e87640 (2014)

    Google Scholar 

  18. Muro-de-la Herran, A., García-Zapirain, B., Méndez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications (2014)

    Google Scholar 

  19. Tao, W., Liu, T., Zheng, R., Feng, H.: Sensors 12(2), 2255 (2012)

    Google Scholar 

  20. Razak, A.H.A., Zayegh, A., Begg, R.K., Wahab, Y.: Sensors 12(7), 9884 (2012)

    Google Scholar 

  21. Toro, B., Nester, C., Farren, P.: Physiother. Theory Pract. 19(3), 137 (2003)

    Google Scholar 

  22. Fahrenberg, J.: Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, pp. 3–20 (1996)

    Google Scholar 

  23. Marey, E.J.: La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine. G. Masson (1878)

    Google Scholar 

  24. Hausdorff, J.M., Ladin, Z., Wei, J.Y.: J. Biomech. 28(3), 347 (1995)

    Google Scholar 

  25. Jagos, H., et al.: J. Med. Eng. Technol. 41(5), 375 (2017)

    Google Scholar 

  26. Zeni Jr., J.A., Richards, J.G., Higginson, J.S.: Gait Posture 27(4), 710 (2008)

    Google Scholar 

  27. Rueterbories, J., Spaich, E.G., Larsen, B., Andersen, O.K.: Med. Eng. Phys. 32(6), 545 (2010)

    Google Scholar 

  28. Myles, C.M., Rowe, P.J., Walker, C.R.C., Nutton, R.W.: Gait Posture 16(1), 46 (2002)

    Google Scholar 

  29. Senden, R., Grimm, B., Heyligers, I.C., Savelberg, H.H.C.M., Meijer, K.: Gait Posture 30(2), 192 (2009)

    Google Scholar 

  30. Aminian, K., et al.: Gait Posture 20(1), 102 (2004)

    Google Scholar 

  31. Yang, C.C., Hsu, Y.L.: Sensors 10(8), 7772 (2010)

    Google Scholar 

  32. Demiris, G., et al.: Med. Inform. Internet Med. 29(2), 87 (2004)

    Google Scholar 

  33. Baldewijns, G., et al.: J. Ambient. Intell. Smart Environ. 8(3), 273 (2016). https://lirias.kuleuven.be/retrieve/427059/Paper_publish.pdf [Available for KU Leuven users]

  34. Goffredo, M., Carter, J.N., Nixon, M.S.: 2D markerless gait analysis. In: Vander, S.J., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) 4th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, vol. 22, pp. 67–71. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89208-3_18

    Chapter  Google Scholar 

  35. Castelli, A., Paolini, G., Cereatti, A., Della Croce, U.: Comput. Math. Methods Med. 2015, 186780 (2015)

    Google Scholar 

  36. PrimeSense Inc.: Prime Sensor\({}^{{TM}}\) NITE 1.3 Algorithms notes (2010). http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf. Accessed 07 June 2018

  37. Shotton, J., et al.: IEEE Trans Pattern Anal. Mach. Intell. 35(12), 2821 (2013)

    Google Scholar 

  38. Zhang,X., Hu, W., Maybank, S., Li, X., Zhu, M.: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  39. Supancic, J.S., Rogez, G., Yang, Y., Shotton, J., Ramanan, D.: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1868–1876 (2015)

    Google Scholar 

  40. Springer, S., Yogev Seligmann, G.: Sensors 16(2), 194 (2016)

    Google Scholar 

  41. Amsters, R., et al.: Proceedings of the 4th International Conference on Information and Communication Technologies for Ageing Well and e-Health, pp. 49–61. SCITEPRESS - Science and Technology Publications (2018)

    Google Scholar 

  42. OpenNI Organization: OpenNI User Guide (2010). https://github.com/OpenNI/OpenNI/blob/master/Documentation/OpenNI_UserGuide.pdf. Accessed 07 June 2018

  43. Foote, T.: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Open-Source Software workshop, pp. 1–6 (2013). https://doi.org/10.1109/TePRA.2013.6556373

  44. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  45. Baldewijns, G., Verheyden, G., Vanrumste, B., Croonenborghs, T.: Proceedings Conference of IEEE Engineering in Medicine and Biology Society, p. 5920 (2014)

    Google Scholar 

  46. Bohannon, R.W.: Age Ageing 26(1), 15 (1997)

    Google Scholar 

  47. Altman, D.G., Bland, J.M.: J. R. Stat. Society. Ser. D ( Stat.) 32(3), 307 (1983)

    Google Scholar 

  48. Julier, S.J., Uhlmann, J.K.: Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182–194. International Society for Optics and Photonics (1997)

    Google Scholar 

  49. Charalambous, C.P.: Measurement of lower extremity kinematics during level walking. In: Banaszkiewicz, P.A., Kader, D.F. (eds.) Classic Papers Orthopaedics, pp. 397–398. Springer, London (2014). https://doi.org/10.1007/978-1-4471-5451-8_100

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MALL (Movements posture & Analysis Laboratory Leuven) of the Faculty of Movement and Rehabilitation Sciences Leuven for providing the facility equipped with a VICON motion capture system in order to validate the proposed platform. Robin Amsters is an SB fellow of the Research Foundation Flanders (FWO) under grant agreement 1S57718N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Filtjens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filtjens, B. et al. (2019). Vision-Based Marker-Less Spatiotemporal Gait Analysis by Using a Mobile Platform: Preliminary Validation. In: Bamidis, P., Ziefle, M., Maciaszek, L. (eds) Information and Communication Technologies for Ageing Well and e-Health. ICT4AWE 2018. Communications in Computer and Information Science, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-030-15736-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15736-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15735-7

  • Online ISBN: 978-3-030-15736-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics