Skip to main content

Interactive System for Automatically Generating Temporal Narratives

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11438)

Abstract

In this demo, we present a tool that allows to automatically generate temporal summarization of news collections. Conta-me Histórias (Tell me stories) is a friendly user interface that enables users to explore and revisit events in the past. To select relevant stories and temporal periods, we rely on a key-phrase extraction algorithm developed by our research team, and event detection methods made available by the research community. Additionally, we offer the engine as an open source package that can be extended to support different datasets or languages. The work described here stems from our participation at the Arquivo.pt 2018 competition, where we have been awarded the first prize.

Keywords

  • Information retrieval
  • Temporal summarization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-15719-7_34
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-15719-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    http://sobre.arquivo.pt/en/arquivo-pt-2018-award-winners/.

  2. 2.

    https://github.com/LIAAD/TemporalSummarizationFramework.

  3. 3.

    https://docs.scipy.org/doc/scipy/reference/signal.html.

  4. 4.

    http://contamehistorias.pt/arquivopt.

  5. 5.

    http://signal.tellmestories.pt.

  6. 6.

    http://labs.tellmestories.pt.

References

  1. Aslam, J.A., Ekstrand-Abueg, M., Pavlu, V., Diaz, F., Sakai, T.: TREC 2013 temporal summarization. In: TREC (2013)

    Google Scholar 

  2. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: YAKE! Collection-independent automatic keyword extractor. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 806–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_80

    CrossRef  Google Scholar 

  3. Campos, R., et al.: A text feature based automatic keyword extraction method for single documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 684–691. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_63

    CrossRef  Google Scholar 

  4. Corney, D., Albakour, D., Martinez, M., Moussa, S.: What do a million news articles look like? In: Proceedings of the First International Workshop on Recent Trends in News Information Retrieval co-located with 38th European Conference on Information Retrieval (ECIR 2016), Padua, Italy, 20 March 2016, pp. 42–47 (2016)

    Google Scholar 

  5. Gomes, D., Cruz, D., Miranda, J., Costa, M., Fontes, S.: Search the past with the Portuguese web archive. In: 22nd International World Wide Web Conference, Rio de Janeiro, Brasil (2013)

    Google Scholar 

  6. Jorge, A.M., et al.: Report on the first international workshop on narrative extraction from texts (Text2Story 2018). In: SIGIR Forum, vol. 52, no. 1, pp. 150–152. ACM Press (2018)

    Google Scholar 

  7. Schubotz, T., Krestel, R.: Online temporal summarization of news events. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) vol. 1, pp. 409–412 (2015)

    Google Scholar 

  8. Tran, G., Alrifai, M., Herder, E.: Timeline summarization from relevant headlines. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 245–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_26

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arian Pasquali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pasquali, A., Mangaravite, V., Campos, R., Jorge, A.M., Jatowt, A. (2019). Interactive System for Automatically Generating Temporal Narratives. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11438. Springer, Cham. https://doi.org/10.1007/978-3-030-15719-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15719-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15718-0

  • Online ISBN: 978-3-030-15719-7

  • eBook Packages: Computer ScienceComputer Science (R0)