Rigorous Mathematical Analysis of the Quasispecies Model: From Manfred Eigen to the Recent Developments

  • Alexander S. Bratus
  • Artem S. NovozhilovEmail author
  • Yuri S. Semenov
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)


We review the major progress in the rigorous analysis of the classical quasispecies model that usually comes in two related but different forms: the Eigen model and the Crow–Kimura model. The model itself was formulated almost 50 years ago, and in its stationary form represents an easy to formulate eigenvalue problem. Notwithstanding the simplicity of the problem statement, we still lack full understanding of the behavior of the mean population fitness and the quasispecies distribution for an arbitrary fitness landscape. Our main goal in this review is twofold: first, to highlight a number of impressive mathematical results, including some of the recent ones, which pertain to the mathematical development of the quasispecies theory. Second, to emphasize that, despite these 50 years of vigorous research, there are still very natural both biological and mathematical questions that remain to be addressed within the quasispecies framework. Our hope is that at least some of the approaches we review in this text can be of help for anyone embarking on further analysis of the quasispecies model.


The quasispecies Crow–Kimura model Error threshold Mean population fitness 

AMS Subject Classification

15A18 92D15 92D25 



ASB’s research is supported in part by Russian Science Foundation grant #19-11-00008.


  1. 1.
    E. Baake, W. Gabriel, Biological evolution through mutation, selection, and drift: an introductory review, in Annual Reviews of Computational Physics VII, ed. by D. Stauffer (World Scientific, River Edge, 1999), pp. 203–264Google Scholar
  2. 2.
    E. Baake, H.-O. Georgii, Mutation, selection, and ancestry in branching models: a variational approach. J. Math. Biol. 54(2), 257–303 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Baake, H. Wagner, Mutation–selection models solved exactly with methods of statistical mechanics. Genet. Res. 78(1), 93–117 (2001)CrossRefGoogle Scholar
  4. 4.
    E. Baake, M. Baake, H. Wagner, Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78(3), 559–562 (1997)CrossRefGoogle Scholar
  5. 5.
    E. Baake, M. Baake, A. Bovier, M. Klein, An asymptotic maximum principle for essentially linear evolution models. J. Math. Biol. 50(1), 83–114 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.S. Bratus, A.S. Novozhilov, Y.S. Semenov, Linear algebra of the permutation invariant Crow–Kimura model of prebiotic evolution. Math. Biosci. 256, 42–57 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.S. Bratus, A.S. Novozhilov, Y.S. Semenov, Adaptive Fitness Landscape for Replicator Systems: To Maximize or Not to Maximize. Mathematical Modelling of Natural Phenomena 13(3), 25 (2018)Google Scholar
  8. 8.
    R. Bürger, The Mathematical Theory of Selection, Mutation, and Recombination (Wiley, Chichester, 2000)zbMATHGoogle Scholar
  9. 9.
    R. Cerf, J. Dalmau, The Quasispecies Distribution (2016). Preprint. arXiv: 1609.05738Google Scholar
  10. 10.
    R. Cerf, J. Dalmau, Quasispecies on class-dependent fitness landscapes. Bull. Math. Biol. 78(6), 1238–1258 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.F. Crow, M. Kimura, An Introduction to Population Genetics Theory (Harper and Row Publishers, New York, 1970)zbMATHGoogle Scholar
  12. 12.
    J. Dalmau, Asymptotic Behavior of Eigen’s Quasispecies Model (2017). Preprint. arXiv: 1704.07280Google Scholar
  13. 13.
    E. Domingo, P. Schuster, Quasispecies: from theory to experimental systems, in Current Topics in Microbiology and Immunology, vol. 392 (Springer, Berlin, 2016)CrossRefGoogle Scholar
  14. 14.
    A.W.M. Dress, D.S. Rumschitzki, Evolution on sequence space and tensor products of representation spaces. Acta Appl. Math. 11(2), 103–115 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Eigen, Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar
  16. 16.
    M. Eigen, J. McCaskill, P. Schuster, Molecular quasi-species. J. Phys. Chem. 92(24), 6881–6891 (1988)CrossRefGoogle Scholar
  17. 17.
    S. Galluccio, Exact solution of the quasispecies model in a sharply peaked fitness landscape. Phys. Rev. E 56(4), 4526 (1997)CrossRefGoogle Scholar
  18. 18.
    J. Hermisson, O. Redner, H. Wagner, E. Baake, Mutation-selection balance: ancestry, load, and maximum principle. Theor. Popul. Biol. 62(1), 9–46 (2002)CrossRefGoogle Scholar
  19. 19.
    J. Hofbauer, The selection mutation equation. J. Math. Biol. 23(1), 41–53 (1985)MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Jain, J. Krug, Adaptation in simple and complex fitness landscapes, in Structural Approaches to Sequence Evolution, eds. by U. Bastolla, M. Porto, H. Eduardo Roman, M. Vendruscolo, chapter 14, pp. 299–339 (Springer, Berlin, 2007)CrossRefGoogle Scholar
  21. 21.
    G.P. Karev, A.S. Novozhilov, F.S. Berezovskaya, On the asymptotic behavior of the solutions to the replicator equation. Math. Med. Biol. 28(2), 89–110 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A.J. Laub, Matrix Analysis for Scientists and Engineers (SIAM, Philadelphia, 2005)CrossRefGoogle Scholar
  23. 23.
    I. Leuthäusser, An exact correspondence between Eigen’s evolution model and a two-dimensional Ising system. J. Chem. Phys. 84(3), 1884–1885 (1986)MathSciNetCrossRefGoogle Scholar
  24. 24.
    I. Leuthäusser, Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48(1), 343–360 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Nowak, P. Schuster, Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137(4), 375–395 (1989)CrossRefGoogle Scholar
  26. 26.
    L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117 (1944)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D.S. Rumschitzki, Spectral properties of Eigen evolution matrices. J. Math. Biol. 24(6), 667–680 (1987)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D.B. Saakian, C.-K. Hu, H. Khachatryan, Solvable biological evolution models with general fitness functions and multiple mutations in parallel mutation-selection scheme. Phys. Rev. E 70(4), 041908 (2004)Google Scholar
  29. 29.
    D.B. Saakian, C.K. Hu, Exact solution of the Eigen model with general fitness functions and degradation rates. Proc. Natl. Acad. Sci. U. S. A. 103(13), 4935–4939 (2006)CrossRefGoogle Scholar
  30. 30.
    D. Saakian, C.-K. Hu, Mathematical models of quasi-species theory and exact results for the dynamics, in Quasispecies: From Theory to Experimental Systems (Springer, Cham, 2015)Google Scholar
  31. 31.
    P. Schuster, Quasispecies on fitness landscapes, in Quasispecies: From Theory to Experimental Systems, ed. by E. Domingo, P. Schuster, Current Topics in Microbiology and Immunology (Springer, Berlin, 2016), pp. 61–120Google Scholar
  32. 32.
    P. Schuster, J. Swetina, Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol. 50(6), 635–660 (1988)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Y.S. Semenov, A.S. Novozhilov, Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model. Math. Biosci. 266, 1–9 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Y.S. Semenov, A.S. Novozhilov, On Eigen’s quasispecies model, two-valued fitness landscapes, and isometry groups acting on finite metric spaces. Bull. Math. Biol. 78(5), 991–1038 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y.S. Semenov, A.S. Novozhilov, Generalized Quasispecies Model on Finite Metric Spaces: Isometry Groups and Spectral Properties of Evolutionary Matrices. Journal of mathematical biology 78(3), 837–878 (2019)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Y.S. Semenov, A.S. Bratus, A.S. Novozhilov, On the behavior of the leading eigenvalue of the Eigen evolutionary matrices. Math. Biosci. 258, 134–147 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J. Swetina, P. Schuster, Self-replication with errors: a model for polynucleotide replication. Biophys. Chem. 16(4), 329–345 (1982)CrossRefGoogle Scholar
  38. 38.
    T. Wiehe, Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models. Genet. Res. 69(02), 127–136 (1997)CrossRefGoogle Scholar
  39. 39.
    A. Wolff, J. Krug, Robustness and epistasis in mutation-selection models. Phys. Biol. 6(3), 036007 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander S. Bratus
    • 1
    • 2
  • Artem S. Novozhilov
    • 3
    Email author
  • Yuri S. Semenov
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Applied Mathematics–1Moscow State University of Railway EngineeringMoscowRussia
  3. 3.Department of MathematicsNorth Dakota State UniversityFargoUSA

Personalised recommendations