Skip to main content

Conformative Filtering for Implicit Feedback Data

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11437))

Included in the following conference series:

Abstract

Implicit feedback is the simplest form of user feedback that can be used for item recommendation. It is easy to collect and is domain independent. However, there is a lack of negative examples. Previous work tackles this problem by assuming that users are not interested or not as much interested in the unconsumed items. Those assumptions are often severely violated since non-consumption can be due to factors like unawareness or lack of resources. Therefore, non-consumption by a user does not always mean disinterest or irrelevance. In this paper, we propose a novel method called Conformative Filtering (CoF) to address the issue. The motivating observation is that if there is a large group of users who share the same taste and none of them have consumed an item before, then it is likely that the item is not of interest to the group. We perform multidimensional clustering on implicit feedback data using hierarchical latent tree analysis (HLTA) to identify user “taste” groups and make recommendations for a user based on her memberships in the groups and on the past behavior of the groups. Experiments on two real-world datasets from different domains show that CoF has superior performance compared to several common baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/kmpoon/hlta.

  2. 2.

    Movielens is used for illustration since movies genres are easier to interpret.

  3. 3.

    When there are multiple latent variables at the top level, arbitrarily pick one of them as the root.

  4. 4.

    https://grouplens.org/datasets/movielens/20m/.

  5. 5.

    www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng.

  6. 6.

    SLIM failed to finish a single run in one week on the Movielens20M dataset during validation, therefore its performance is not reported on this dataset.

  7. 7.

    https://www.librec.net/index.html.

  8. 8.

    During our experiments we found that GBPR has low global diversity. These results are not reported in the interest of space.

  9. 9.

    We did observe slight deterioration but the magnitude was too small to draw conclusions from.

References

  1. Aggarwal, C.C.: Recommender Systems: The Textbook, 1st edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3

    Book  Google Scholar 

  2. Chen, P., Zhang, N.L., Liu, T., Poon, L.K., Chen, Z., Khawar, F.: Latent tree models for hierarchical topic detection. Artif. Intell. 250, 105–124 (2017)

    Article  MathSciNet  Google Scholar 

  3. Chen, T., Zhang, N.L., Liu, T., Poon, K.M., Wang, Y.: Model-based multidimensional clustering of categorical data. Artif. Intell. 176(1), 2246–2269 (2012)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Y., Yin, L., Yu, Y.: Lorslim: low rank sparse linear methods for top-n recommendations. In: 2014 IEEE International Conference on Data Mining (ICDM), pp. 90–99. IEEE (2014)

    Google Scholar 

  5. Christakopoulou, E., Karypis, G.: HOSLIM: higher-order sparse linear method for top-n recommender systems. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part II. LNCS (LNAI), vol. 8444, pp. 38–49. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06605-9_4

    Chapter  Google Scholar 

  6. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a free recommender system library. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 305–308. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2043932.2043989

  7. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992). https://doi.org/10.1145/138859.138867

    Article  Google Scholar 

  8. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 549–558. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2911451.2911489

  9. Heckel, R., Vlachos, M., Parnell, T., Dünner, C.: Scalable and interpretable product recommendations via overlapping co-clustering. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 1033–1044. IEEE (2017)

    Google Scholar 

  10. Hong, L., Bekkerman, R., Adler, J., Davison, B.D.: Learning to rank social update streams. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 651–660. ACM (2012)

    Google Scholar 

  11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE Computer Society, Washington, DC, USA (2008). https://doi.org/10.1109/ICDM.2008.22

  12. Knott, M., Bartholomew, D.J.: Latent Variable Models and Factor Analysis. Edward Arnold, London (1999)

    MATH  Google Scholar 

  13. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston (2015). https://doi.org/10.1007/978-0-387-85820-3_5

    Chapter  Google Scholar 

  14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  15. Levy, M., Jack, K.: Efficient top-n recommendation by linear regression. In: RecSys Large Scale Recommender Systems Workshop (2013)

    Google Scholar 

  16. Liu, T.F., Zhang, N.L., Chen, P., Liu, A.H., Poon, L.K., Wang, Y.: Greedy learning of latent tree models for multidimensional clustering. Mach. Learn. 98(1–2), 301–330 (2015)

    Article  MathSciNet  Google Scholar 

  17. Liu, T., Zhang, N.L., Chen, P.: Hierarchical latent tree analysis for topic detection. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS (LNAI), vol. 8725, pp. 256–272. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_17

    Chapter  Google Scholar 

  18. Nichols, D.M.: Implicit ratings and filtering. In: Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, vol. 12. ERCIM, Budapaest (1997)

    Google Scholar 

  19. Ning, X., Karypis, G.: Slim: Sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 497–506. IEEE (2011)

    Google Scholar 

  20. Pan, R., et al.: One-class collaborative filtering. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 502–511. IEEE Computer Society, Washington, DC, USA (2008). https://doi.org/10.1109/ICDM.2008.16

  21. Pan, W., Chen, L.: Cofiset: collaborative filtering via learning pairwise preferences over item-sets. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 180–188. SIAM (2013)

    Google Scholar 

  22. Pan, W., Chen, L.: GBPR: group preference based bayesian personalized ranking for one-class collaborative filtering. IJCAI 13, 2691–2697 (2013)

    Google Scholar 

  23. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    MATH  Google Scholar 

  24. Pilászy, I., Zibriczky, D., Tikk, D.: Fast als-based matrix factorization for explicit and implicit feedback datasets. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 71–78. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1864708.1864726

  25. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington, Virginia, United States (2009). http://dl.acm.org/citation.cfm?id=1795114.1795167

  26. Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 83–90. ACM (2012)

    Google Scholar 

  27. Wang, K., Peng, H., Jin, Y., Sha, C., Wang, X.: Local weighted matrix factorization for top-n recommendation with implicit feedback. Data Sci. Eng. 1(4), 252–264 (2016). https://doi.org/10.1007/s41019-017-0032-6

    Article  Google Scholar 

  28. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 495–503. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3018661.3018689

  29. Wu, Y., Liu, X., Xie, M., Ester, M., Yang, Q.: Cccf: Improving collaborative filtering via scalable user-item co-clustering. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 73–82. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2835776.2835836

  30. Xu, B., Bu, J., Chen, C., Cai, D.: An exploration of improving collaborative recommender systems via user-item subgroups. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 21–30. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2187836.2187840

  31. Zhang, N.L.: Hierarchical latent class models for cluster analysis. J. Mach. Learn. Res. 5, 697–723 (2004). http://dl.acm.org/citation.cfm?id=1005332.1016782

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

Research on this article was supported by Hong Kong Research Grants Council under grant 16202118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Khawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khawar, F., Zhang, N.L. (2019). Conformative Filtering for Implicit Feedback Data. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics