Information Retrieval Models for Contact Recommendation in Social Networks

  • Javier Sanz-CruzadoEmail author
  • Pablo CastellsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11437)


The fast growth and development of online social networks has posed new challenges for information retrieval and, as a particular case, recommender systems. A particularly compelling problem in this context is recommending network edges, that is, automatically predicting people that a given user may wish or benefit from connecting to in the network. This task has interesting particularities compared to more traditional recommendation domains, a salient one being that recommended items belong to the same space as the users they are recommended to. In this paper, we investigate the connection between the contact recommendation and the text retrieval tasks. Specifically, we research the adaptation of IR models for recommending contacts in social networks. We report experiments over data downloaded from Twitter where we observe that IR models, particularly BM25, are competitive compared to state-of-the art contact recommendation methods. We further find that IR models have additional advantages in computational efficiency, and allow for fast incremental updates of recommendations as the network grows.


Social networks Contact recommendation Text information retrieval 



This work was funded by the Spanish Government (grant nr. TIN2016-80630-P).


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Aiello, L., Barbieri, N.: Evolution of ego-networks in social media with link recommendations. In: 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), pp. 111–120. ACM, New York (2017)Google Scholar
  4. 4.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 635–644. ACM, New York (2011)Google Scholar
  5. 5.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval: the concepts and technology behind search, 2nd edn. Addison-Wesley, Harlow (2011)Google Scholar
  6. 6.
    Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides of the same coin? Commun. ACM 35(12), 29–38 (1992)CrossRefGoogle Scholar
  7. 7.
    Bellogín, A., Wang, J., Castells, P.: Bridging memory-based collaborative filtering and text retrieval. Inf. Retrieval 16(6), 697–724 (2013)CrossRefGoogle Scholar
  8. 8.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information retrieval: implementing and evaluating search engines. MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  9. 9.
    Castells, P., Hurley, N.J., Vargas, S.: Novelty and Diversity in Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 881–918. Springer, Boston, MA (2015). Scholar
  10. 10.
    Goel, A., Gupta, P., Sirois, J., Wang, D., Sharma, A., Gurumurthy, S.: The who-to-follow system at twitter: strategy, algorithms and revenue impact. Interfaces 45(1), 98–107 (2015)CrossRefGoogle Scholar
  11. 11.
    Goel, A., Gupta, P., Sirois, J., Wang, D., Sharma, A., Gurumurthy, S.: WTF: the who to follow service at Twitter. In: 22nd International Conference on World Wide Web (WWW 2013), pp. 505–514. ACM, New York (2013)Google Scholar
  12. 12.
    Guy, I.: Social Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 2nd edn, pp. 511–543. Springer, New York (2015)CrossRefGoogle Scholar
  13. 13.
    Hannon, J., Bennet, M., Smyth, B.: Recommending Twitter users to follow using content and collaborative filtering approaches. In: 4th ACM conference on Recommender Systems (RecSys 2010), pp. 199–206. ACM, New York (2010)Google Scholar
  14. 14.
    Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM 06 Workshop on Link Analysis, Counterterrorism and Security at the 5th SIAM International Conference of Data Mining (2006)Google Scholar
  15. 15.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 8th IEEE International Conference on Data Mining (ICDM 2008), pp. 263–272, IEEE Press, New York (2008)Google Scholar
  16. 16.
    Jaccard, P.: Étude de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37(142), 547–579 (1901)Google Scholar
  17. 17.
    Jelinek, F., Mercer, R.L.: Interpolated estimation of Markov source parameters from sparse data. In: Gelsema, E.S., Kanal, L.N. (eds.) Pattern Recognition in Practice, pp. 381–397. North-Holland, Amsterdam (1980)Google Scholar
  18. 18.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  19. 19.
    Lü, L., Zhou, T.: Link prediction in social networks: a survey. Phys. A 390(6), 1150–1170 (2010)CrossRefGoogle Scholar
  20. 20.
    Mackay, D., Bauman, L.: A hierarchical Dirichlet language model. Nat. Lang. Eng. 1(3), 289–307 (1995)CrossRefGoogle Scholar
  21. 21.
    Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 37–76. Springer, Boston, MA (2015). Scholar
  22. 22.
    Ponte, J.M., Croft, W.B.: A language modelling approach to information retrieval. In: 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), pp. 275–281. ACM Press, New York (1998)Google Scholar
  23. 23.
    RankSys library. Accessed 11 Oct 2018
  24. 24.
    Robertson, S.E.: The probability ranking principle in IR. J. Doc. 33(4), 294–304 (1977)CrossRefGoogle Scholar
  25. 25.
    Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inform. Retrieval 3(4), 333–389 (2009)CrossRefGoogle Scholar
  26. 26.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefGoogle Scholar
  27. 27.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  28. 28.
    Sanz-Cruzado, J., Castells, P.: Enhancing structural diversity in social networks by recommending weak ties. In: 12th ACM Conference on Recommender Systems (RecSys 2018), pp. 233–241. ACM, New York (2018)Google Scholar
  29. 29.
    Sanz-Cruzado, J., Pepa, S.M., Castells, P.: Structural novelty and diversity in link prediction. In: 9th International Workshop on Modelling Social Media (MSM 2018) at The Web Conference (WWW Companion 2018), pp. 1347–1351. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2018)Google Scholar
  30. 30.
    Sanz-Cruzado, J., Castells, P.: Contact recommendations in social networks. In: Berkovsky, S., Cantador, I., Tikk, D. (eds.) Collaborative recommendations: algorithms, Practical Challenges and Applications, pp. 525–577. World Scientific Publishing, Singapore (2018)Google Scholar
  31. 31.
    Valcarce, D.: Exploring statistical language models for recommender systems. In: 9th ACM Conference on Recommender Systems (RecSys 2015), pp. 375–378. ACM Press, New York (2015)Google Scholar
  32. 32.
    Valcarce, D., Parapar, J., Barreiro, A.: Axiomatic analysis of language modelling of recommender systems. Int. J. Uncertainty, Fuzziness Knowl.-based Syst. 25(Suppl. 2), 113–127 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 266–275. ACM, New York (2003)Google Scholar
  34. 34.
    Yu, T., Mengshoel, O., Jude, A., Feller, E., Forgeat, J., Radia, N.: Incremental learning for matrix factorization in recommender systems. In: 2016 IEEE Conference on Big Data (BigData 2016), pp. 1056–1063. IEEE Press, New York (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de Madrid, Escuela Politécnica SuperiorMadridSpain

Personalised recommendations